5 $1 / 2$ Digit Multimeters

NI 4050, NI 4060

- $51 / 2$-digits
- 5 measurement modes
- ± 300 VDCN rms $_{\text {rms }}$ maximum
- $200 \mathrm{M} \Omega$ maximum (2 and 4-wire)
- 60 readings/s maximum

Models

- NI PCMCIA-4050
- NI PCI-4060
- NI PXI-4060

Operating Systems
 - Windows 2000/NT/XP/Me/9x
 Recommended Software
 - LabVIEW
 - LabWindows/CVI
 - Measurement Studio for Visual C++
 Other Compatible Software
 - Visual Basic
 - C/C++
 Driver Software (included)
 - NI-DMM
 Calibration Certificate Included
 See page 21.

Overview

The NI 4050 and NI 4060 devices are full-featured digital multimeters (DMMs). They feature accurate $5 \frac{1}{2}$ digit DC voltage and current, True-rms AC voltage and current, and resistance measurements. The PCMCIA-4050, with its size, weight, and low-power consumption, is ideal for portable measurements and data logging with handheld and notebook computers. The NI 4060 DMMs are perfectly suited for use in automated production test, portable field test, and benchtop electronic test. Using the NI 4060 DMMs with National Instruments switching modules, such as PXI-2501, PXI-2503, SCXI-1127, SCXI-1128, or SCXI-1129, you can measure thousands of channels, consisting of voltages, thermocouples, RTDs, thermistors, and current loops, and keep a firm control on the cost of your system.

Hardware

Reading Rates

NI 4050 and NI 4060 DMMs offer multiple reading rates determined by your resolution, function, range selections, and powerline rejection. The maximum reading rate is 60 reading/s, once the initial setup time affecting the first reading is passed. Please contact your National Instruments local sales representative for more information regarding measurement performance in your specific application.

Measuring Voltages

The NI 4050 and NI 4060 DMMs have five input ranges available for measuring DC voltages: $20 \mathrm{mV}, 200 \mathrm{mV}$, $2 \mathrm{~V}, 25 \mathrm{~V}$, and 250 V . Five input ranges are available for measuring AC voltages: 20 $\mathrm{m} \mathrm{V}_{\mathrm{rms}}, 200 \mathrm{~m} \mathrm{~V}_{\mathrm{rms}}, 2 \mathrm{~V}_{\mathrm{rms}} 25 \mathrm{~V}_{\mathrm{rms}}$, and 250 V rms. The NI 4060 DMMs measure AC voltages to the specified accuracy as long as the voltage is within 10 percent of the selected input range. In AC voltage ranges, the NI 4050 and NI 4060 DMMs measure the AC-coupled True-rms value of a signal.

Measuring Resistance

The NI 4050 and NI 4060 DMMs have five basic input ranges for both 2-wire and 4 -wire (NI 4060 only) resistance measurements, and an extended range for 2 -wire measurements. The basic ranges are $200 \Omega, 2 \mathrm{k} \Omega, 20 \mathrm{k} \Omega, 200 \mathrm{k} \Omega$, and $2 \mathrm{M} \Omega$. With extended range, measurements up to $200 \mathrm{M} \Omega$ are possible. The NI 4050 and NI 4060 DMMs use a common technique to measure resistance. The method involves sending a current through the test resistor and measuring the voltage drop across the resistor. In the extended ohms range, a $1 \mathrm{M} \Omega$ resistor is added in parallel with the test resistor.

Family	Bus	Accuracy	SCXI Control	Autozero	Triggering for Scanners	4-Wire Resistance Measurement
NI 4050	PCMCIA	$51 / 2$ digit	-	-	-	-
NI 4060	PCI, PXI	$51 / 2$ digit	\checkmark	\checkmark	\checkmark	\checkmark

Measuring Current

For the PCMCIA-4050, use the optional CSM Series current shunt accessories

Table 1. NI 4050 and NI 4060 Channel, Speed, and Resolution Specifications

512 Digit Multimeters

to measure both AC and DC current. The CSM accessories include a precision resistor that converts the current through the shunt into a voltage measurable by the PCMCIA-4050. For measuring currents up to 200 mA or 10 A , use the CSM-200mA or the CSM-10A, respectively.

The NI 4060 DMMs have built-in current measurement capability. Two input ranges exist for DC and True-rms AC current measurements - 20 mA and 200 mA . For measuring currents between 200 mA and 10 A , use the CSM-10A accessory.

Diode Testing

The NI 4050 and NI 4060 DMMs measure the forward drop (up to 2 V) across a diode. The diode is biased with $100 \mu \mathrm{~A}$ current, and the resulting voltage drop is measured. Diode measurements are made with a fixed range of 2 V .

Calibration

The NI 4050 and NI 4060 DMMs are shipped with a calibration certificate stating that the instrument was calibrated to NISTtraceable standards to the levels detailed in the specifications. These DMMs can be returned to National Instruments or a qualified metrology lab for calibration.

Cables and Probes

The NI 4060 DMMs have built-in shrouded banana jacks to prevent exposure to potentially hazardous voltages on the test probes. The DMM kits include the P-1 Probe Set - two 1 m test leads (red and black) with test probes.

The P-2 Probe Set, sold separately, includes two 1 m test leads (red and black) with shrouded banana plugs on one end and a variety of optional terminals on the other - two alligator clips (red and black) with boots, two spring hooks (red and black), and two spade connectors (red and black).

The banana-plug-to-bare-wire kit is a pair of banana to bare wire plugs (one red, one black) that permits you to connect your DMM to screw terminals for channel expansion via matrices or scanners. To connect your NI 4060 to SCXI scanners and matrices, special cable kits are available (SCXI-1357 and SCXI-1358). Refer to page 507 for more information on switch cabling.

The probe sets meet IEC 1010 safety requirements and permit direct probing of circuits and cables.

Triggering for Switches (NI 4060 only)

The NI 4060 DMMs work with external multiplexer/matrix switches. In particular, the NI 4060 devices have been designed to integrate seamlessly with National Instruments switch offerings for SCXI and PXI. Two signals, Voltmeter Complete Trigger Output and Trigger Input, control the switches. Access to the signals is through two BNC connectors on the auxiliary trigger cable. On PXI, you can access the triggers through the PXI trigger bus.

Figure 1. Fundamental DMM Architecture

Software

Driver Software

All National Instruments DMMs are shipped with NI-DMM driver software. NI-DMM is an IVI-compliant driver that exports the complete functionality of the DMMs through an easy-to-use application programming interface. You should use this driver if you want to build an automated test application or integrate the NI DMMs into your test software. NI-DMM works with LabVIEW, LabWindows/CVI, Measurement Studio for Visual C++, and Microsoft Visual Basic.

Interactive Control

Every NI DMM is shipped with the DMM Soft Front Panel (SFP). You can use the DMM SFP to quickly control the DMM without writing a program. The DMM SFP provides access to all hardware features except triggering and scanning.

Ordering Information

NI PCMCIA-4050 777186-01
Includes the PCMCIA-4050 card, P4-BJ2 Cable, P-1 Probe Set, NI-DMM, the DMM Soft Front Panel, carrying case, and calibration certificate.

NI PCI-4060 777559-01

NI PXI-4060

777554-01
Includes the NI 4060 hardware, P-1 probe set, NI-DMM, DMM Soft Front Panel, and calibration certificate.
For information on extended warranty and value added services, see page 20.

Cables and Accessories

Standard Probe, P-1 Probe Set 761000-01
Additional Probe, P-2 Probe Set 184698-01
Banana plug to bare wire, P-3 Probe Set
1 m , red and black (2 wires)
185692-01
Auxiliary trigger cable for use with external multiplexers 0.5 m .184931-0R5
10 A current shunt, CSM-10A
.777488-02

[^0]
5½ Digit Multimeters

Specifications - NI 4060

Specifications are guaranteed between 15 and $35^{\circ} \mathrm{C}$ unless otherwise noted.

DC Voltage (Accuracy \% of reading $\pm \mu \mathrm{V}$)

Range	24 Hour $\left(25^{\circ} \mathrm{C} \pm 1{ }^{\circ} \mathrm{C}\right)$	90 Day $\left(25{ }^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}\right)$	1 Year $\left(25{ }^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}\right)$	Temperature Coefficient $\left(\%\right.$ of reading $\left./{ }^{\circ} \mathrm{C}+\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\right)$
250.000 V	$0.0032 \%+1.25 \mathrm{mV}$	$0.021 \%+1.25 \mathrm{mV}$	$0.024 \%+1.25 \mathrm{mV}$	$0.00017 \% /{ }^{\circ} \mathrm{C}+480 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
25.0000 V	$0.0032 \%+1 \mathrm{mV}$	$0.021 \%+1 \mathrm{mV}$	$0.024 \%+1 \mathrm{mV}$	$0.0017 \% /{ }^{\circ} \mathrm{C}+480 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
2.00000 V	$0.0029 \%+10 \mu \mathrm{~V}$	$0.014 \%+10 \mu \mathrm{~V}$	$0.017 \%+10 \mu \mathrm{~V}$	$0.0009 \% /{ }^{\circ} \mathrm{C}+5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
200.000 mV	$0.0029 \%+6 \mu \mathrm{~V}$	$0.014 \%+6 \mu \mathrm{~V}$	$0.017 \%+6 \mu \mathrm{~V}$	$0.0009 \% /{ }^{\circ} \mathrm{C}+1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
20.0000 mV	$0.0029 \%+6 \mu \mathrm{~V}$	$0.014 \%+6 \mu \mathrm{~V}$	$0.017 \%+6 \mu \mathrm{~V}$	$0.0009 \% /{ }^{\circ} \mathrm{C}+1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$

Accuracy numbers are for $51 / 2$ digits with autozero on and include the effects of full and zero-scale errors, temperature variation, linearity, and noise. Overrange capabilities to 300 V .

Noise Rejection

NMRR

DC ECMRR .
AC ECMR $(50 / 60 \mathrm{~Hz})$ 80 dB (10 Hz filter setting, $50 / 60 \mathrm{~Hz}$ powerline frequency $\pm 1 \%$) 140 dB (with a $1 \mathrm{k} \Omega$ imbalance in HI lead) 150 dB (with a $1 \mathrm{k} \Omega$ imbalance in HI lead)

Input Characteristics

Input bias curren	1 nA maximum
Input resistance	$\begin{aligned} & >1 \mathrm{G} \Omega(2 \mathrm{~V}, 200 \mathrm{mV}, 20 \mathrm{mV} \text { ranges }) ; \\ & 1 \mathrm{M} \Omega(250 \mathrm{~V}, 25 \mathrm{~V}) \end{aligned}$

DC Current (Accuracy \% of reading $\pm \mathrm{\mu}$ A)

Range	24 Hour $\left(25^{\circ} \mathrm{C} \pm 1{ }^{\circ} \mathrm{C}\right)$	90 Day $\left(25^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}\right)$	1 Year $\left(25{ }^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}\right)$	Temperature Coefficient $\left(\%\right.$ of reading $\left./{ }^{\circ} \mathrm{C}+\mu \mathrm{A} /{ }^{\circ} \mathrm{C}\right)$
20.0000 mA	$0.015 \%+10 \mu \mathrm{~A}$	$0.039 \%+10 \mu \mathrm{~A}$	$0.042 \%+10 \mu \mathrm{~A}$	$0.0035 \% /{ }^{\circ} \mathrm{C}+1 \mu \mathrm{~A} /{ }^{\circ} \mathrm{C}$
200.000 mA	$0.015 \%+10 \mu \mathrm{~A}$	$0.039 \%+10 \mu \mathrm{~A}$	$0.042 \%+10 \mu \mathrm{~A}$	$0.0035 \% /{ }^{\circ} \mathrm{C}+1 \mu \mathrm{~A} /{ }^{\circ} \mathrm{C}$
$10.0000 \mathrm{~A}^{*}$	$0.02 \%+1 \mathrm{~mA}$	$0.035 \%+2 \mathrm{~mA}$	$0.035 \%+2 \mathrm{~mA}$	$0.007 \% /{ }^{\circ} \mathrm{C}+0.1 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$

*Requires 10 A shunt, CSM-10A
Accuracy numbers are for $51 / 2$ digits with autozero on and include the effects of full and zero-scale errors, temperature variation, linearity, and noise.

Input Characteristics

Input protection Fuse F1 $500 \mathrm{~mA} / 250 \mathrm{~V}$ fast-fusing
Shunt resistor 1Ω
Burden voltage...................................... $<400 \mathrm{mV}$ at 200 mADC

AC Voltage (Accuracy \% of reading $\pm \mathrm{mV}$)

Range	$\begin{gathered} 24 \text { Hour } \\ \left(25^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C}\right) \\ \hline \end{gathered}$	$\begin{gathered} 90 \text { Day } \\ \left(25^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{gathered} 1 \text { Year } \\ \left(25^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}\right) \end{gathered}$	Temperature Coefficient (\% of reading $/{ }^{\circ} \mathrm{C}+\mathrm{mV} /{ }^{\circ} \mathrm{C}$)
250.000 V	$0.6 \%+250 \mathrm{mV}$	$0.62 \%+680 \mathrm{mV}$	$0.62 \%+680 \mathrm{mV}$	$0.007 \% /{ }^{\circ} \mathrm{C}+20 \mathrm{mV} /{ }^{\circ} \mathrm{C}$
25.0000 V	0.16\% + 30 mV	$0.18 \%+210 \mathrm{mV}$	0.18\% + 210 mV	$0.007 \% /{ }^{\circ} \mathrm{C}+20 \mathrm{mV} /{ }^{\circ} \mathrm{C}$
2.00000 V	0.28\% + 3 mV	$0.30 \%+21 \mathrm{mV}$	$0.30 \%+21 \mathrm{mV}$	$0.019 \% /{ }^{\circ} \mathrm{C}+2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$
200.000 mV	$0.16 \%+0.22 \mathrm{mV}$	$0.18 \%+1.20 \mathrm{mV}$	$0.18 \%+1.20 \mathrm{mV}$	$0.007 \% /{ }^{\circ} \mathrm{C}+0.110 \mathrm{mV} /{ }^{\circ} \mathrm{C}$
20.0000 mV	$0.28 \%+100 \mu \mathrm{~V}$	$0.30 \%+170 \mu \mathrm{~V}$	$0.30 \%+170 \mu \mathrm{~V}$	$0.019 \% /{ }^{\circ} \mathrm{C}+12 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$

Accuracy numbers are for $51 / 2$ digits and include the effects of full and zero-scale errors, temperature variation, linearity, and noise. Applies for sine waves $\geq 10 \%$ of input range. Accuracy may be affected by source impedance, cable capacitances, dielectric absorption, or slew rate. Overrange capabilities to 300 V .

Noise Rejection

AC CMRR ($50 / 60 \mathrm{~Hz}$) $>80 \mathrm{~dB}$ (with a $1 \mathrm{k} \Omega$ imbalance in HI lead)

Input Characteristics

Input resistance
 $1 \mathrm{M} \Omega$
 Bandwidth.
 $20 \mathrm{~Hz}-25 \mathrm{kHz}$

Additional AC Errors

Frequency dependent errors

Input Frequency	Additional Error (\% of reading)
$20 \mathrm{~Hz}-50 \mathrm{~Hz}$	2.5%
$50 \mathrm{~Hz}-100 \mathrm{~Hz}$	0%
$100 \mathrm{~Hz}-20 \mathrm{kHz}$	1%
$20 \mathrm{~Hz}-25 \mathrm{kHz}$	2.5%

AC Current (Accuracy \% of reading $\pm \mathrm{mA}$)

Range	24 Hour $\left(25^{\circ} \mathrm{C} \pm 1{ }^{\circ} \mathrm{C}\right)$	90 Day $\left(25{ }^{\circ} \mathrm{C} \pm 10{ }^{\circ} \mathrm{C}\right)$	1 Year $\left(255^{\circ} \mathrm{C} \pm 10{ }^{\circ} \mathrm{C}\right)$	Temperature Coefficient $\left(\%\right.$ of reading $\left./{ }^{\circ} \mathrm{C} \pm \mathrm{mA} /{ }^{\circ} \mathrm{C}\right)$
20.0000 mA	$0.30 \%+100 \mu \mathrm{~A}$	$0.32 \%+170 \mu \mathrm{~A}$	$0.32 \%+170 \mu \mathrm{~A}$	$0.022 \% /{ }^{\circ} \mathrm{C}+12 \mu \mathrm{~A} /{ }^{\circ} \mathrm{C}$
200.000 mA	$0.18 \%+0.22 \mathrm{~mA}$	$0.20 \%+1.2 \mathrm{~mA}$	$0.20 \%+1.2 \mathrm{~mA}$	$0.009 \% /{ }^{\circ} \mathrm{C}+0.110 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$
$10.0000 \mathrm{~A}^{*}$	$0.3 \%+22 \mathrm{~mA}$	$0.32 \%+120 \mathrm{~mA}$	$0.32 \%+120 \mathrm{~mA}$	$0.026 \% /{ }^{\circ} \mathrm{C}+11 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$

*Requires 10 A shunt, CSM-10A
Accuracy numbers are for $51 / 2$ digits and include the effects of full and zero-scale errors, temperature variation, linearity, and noise.

Input Characteristics

Input protection	Fuse F1 $500 \mathrm{~mA} / 250 \mathrm{~V}$ fast-fusing
Shunt resistor	1Ω
Burden voltage.	$<400 \mathrm{mV}$ at 200 mA AC

Resistance (Accuracy \% of reading $\pm \Omega$)

Range	24 Hour $\left(25^{\circ} \mathrm{C} \pm 1{ }^{\circ} \mathrm{C}\right)$	90 Day $\left(25{ }^{\circ} \mathrm{C} \pm 10{ }^{\circ} \mathrm{C}\right)$	1 Year $\left(25{ }^{\circ} \mathrm{C} \pm 10{ }^{\circ} \mathrm{C}\right)$	Temperature Coefficient $\left(\%\right.$ of reading $\left./{ }^{\circ} \mathrm{C}+\Omega /{ }^{\circ} \mathrm{C}\right)$
Extended ohm				
$(>2 \mathrm{M} \Omega)$	$0.1 \%+6 \mathrm{k} \Omega$	$0.1 \%+60 \mathrm{k} \Omega$	$0.1 \%+60 \mathrm{k} \Omega$	$0.0072 \% /{ }^{\circ} \mathrm{C}+6 \mathrm{k} \Omega /{ }^{\circ} \mathrm{C}$
$2.00000 \mathrm{M} \Omega{ }^{*}$	$0.012 \%+9 \Omega$	$0.077 \%+27 \Omega$	$0.080 \%+27 \Omega$	$0.0072 \% /{ }^{\circ} \mathrm{C}+2 \Omega /{ }^{\circ} \mathrm{C}$
$200.000 \mathrm{k} \Omega$	$0.012 \%+5 \Omega$	$0.077 \%+22 \Omega$	$0.080 \%+22 \Omega$	$0.0072 \% /{ }^{\circ} \mathrm{C}+2 \Omega /{ }^{\circ} \mathrm{C}$
$20.0000 \mathrm{k} \Omega$	$0.006 \%+0.09 \Omega$	$0.024 \%+0.3 \Omega$	$0.027 \%+0.3 \Omega$	$0.0020 \% /{ }^{\circ} \mathrm{C}+0.02 \Omega /{ }^{\circ} \mathrm{C}$
$2.00000 \mathrm{k} \Omega$	$0.006 \%+0.05 \Omega$	$0.024 \%+0.2 \Omega$	$0.027 \%+0.2 \Omega$	$0.0020 \% /{ }^{\circ} \mathrm{C}+0.02 \Omega /{ }^{\circ} \mathrm{C}$
200.000Ω	$0.006 \%+0.05 \Omega$	$0.024 \%+0.2 \Omega$	$0.027 \%+0.2 \Omega$	$0.0020 \% /{ }^{\circ} \mathrm{C}+0.02 \Omega /{ }^{\circ} \mathrm{C}$

*With autozero on, or while scanning, and when large resistance with capacitive loads is measured, additional delay time is required.
Accuracy numbers are for 4 -wire resistance mode, $51 / 2$ digits with autozero on and include the effects of full and zero-scale errors, temperature variation, linearity, and noise. Measurement modes

Ohms... 2 or 4-wire
Extended ohms
2-wire only
$10 \Omega(200 \Omega$ range $), 1 \mathrm{k} \Omega$ (all other ranges) 0.6Ω
Additional error for 2-wire resistance

Diode Testing (Accuracy \% of reading $\pm \mu \mathrm{V}$)

Range	24 Hour $\left(25^{\circ} \mathrm{C} \pm 1{ }^{\circ} \mathrm{C}\right)$	90 Day $\left(25^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}\right)$	1 Year $\left(25^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}\right)$	Temperature Coefficient $\left(\%\right.$ of reading $\left./{ }^{\circ} \mathrm{C}+\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\right)$
2 V	$0.006 \%+7 \mu \mathrm{~V}$	$0.024 \%+22 \mu \mathrm{~V}$	$0.027 \%+22 \mu \mathrm{~V}$	$0.0020 \% /{ }^{\circ} \mathrm{C}+2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$

Accuracy numbers are for $5 \frac{1}{2}$ digits with autozero on and include the effects of full and zero-scale errors, temperature variation, linearity, and noise.
\qquad

General Specifications

Settling time
Affected by source impedance and input signal changes.
Warm-up time ... 30 minutes for measurements accurate within specifications. Up to $2,000 \mathrm{~m}$; at higher altitudes the installation category must be derated. 300 V maximum between either input terminal and earth ground
Power Requirement
+5 VDC ... 250 mA in operational mode

Physical

Dimensions

PCl .

10.8 by 17.5 cm (4.25 by 6.9 in .)

PXI
10 by 16 cm (3.9 by 6.33 in .)

Environment

Operating temperature 0 to $55^{\circ} \mathrm{C}$
Storage temperature. O $55^{\circ} \mathrm{C}$

Relative humidity
-20 to $70{ }^{\circ} \mathrm{C}$
Certifications and Compliances
CE Mark Compliance ($\boldsymbol{\epsilon}$

512 Digit Multimeters

Specifications - PCMCIA-4050

DC Voltage (Accuracy $=\%$ of reading $\pm \mu \mathrm{V}$)

Range	24 Hour $\left(25{ }^{\circ} \mathrm{C} \pm 1{ }^{\circ} \mathrm{C}\right)$	90 Day $\left(25{ }^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}\right)$	1 Year $\left(25{ }^{\circ} \mathrm{C} \pm 10{ }^{\circ} \mathrm{C}\right)$	Temperature Coefficient $\left(\%\right.$ of reading $\left./{ }^{\circ} \mathrm{C}+\mu \mathrm{V} / /^{\mathrm{C}}\right)$
250.000 V	$0.0032 \%+4.9 \mathrm{mV}$	$0.021 \%+49 \mathrm{mV}$	$0.024 \%+49 \mathrm{mV}$	$0.0017 \% /{ }^{\circ} \mathrm{C}+4800 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
25.0000 V	$0.0032 \%+4.9 \mathrm{mV}$	$0.021 \%+49 \mathrm{mV}$	$0.024 \%+49 \mathrm{mV}$	$0.0017 \% /{ }^{\circ} \mathrm{C}+4800 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
2.00000 V	$0.0029 \%+37 \mu \mathrm{~V}$	$0.014 \%+260 \mu \mathrm{~V}$	$0.017 \%+260 \mu \mathrm{~V}$	$0.0009 \% /{ }^{\circ} \mathrm{C}+25 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
200.000 mV	$0.0029 \%+27 \mu \mathrm{~V}$	$0.014 \%+250 \mu \mathrm{~V}$	$0.017 \%+250 \mu \mathrm{~V}$	$0.0009 \% /{ }^{\circ} \mathrm{C}+25 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
20.0000 mV	$0.0029 \%+27 \mu \mathrm{~V}$	$0.014 \%+250 \mu \mathrm{~V}$	$0.017 \%+250 \mu \mathrm{~V}$	$0.0009 \% /{ }^{\circ} \mathrm{C}+25 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \mathrm{C}$

Accuracy numbers are for $51 / 2$ digits and include the effects of full and zero-scale errors, temperature variation, linearity, and noise.

Noise Rejection

NMRR ... $80 \mathrm{~dB}(10 \mathrm{~Hz}$ reading rate, $50 / 60 \mathrm{~Hz}$
powerline frequency $\pm 1 \%)$

DC Current (Accuracy $=\%$ of reading $\pm \mu \mathrm{A}$)

Range	24 Hour $\left(25^{\circ} \mathrm{C} \pm ~^{\circ} \mathrm{C}\right)$	90 Day $\left(255^{\circ} \mathrm{C} \pm 10{ }^{\circ} \mathrm{C}\right)$	1 Year $\left(25{ }^{\circ} \mathrm{C} \pm 10{ }^{\circ} \mathrm{C}\right)$	Temperature Coefficient $\left(\%\right.$ of reading $\left./{ }^{\circ} \mathrm{C} \pm \mu \mathrm{A} /{ }^{\circ} \mathrm{C}\right)$
20.0000 mA	$0.1 \%+27 \mu \mathrm{~A}$	$0.14 \%+250 \mu \mathrm{~A}$	$0.15 \%+250 \mu \mathrm{~A}$	$0.0035 \% /{ }^{\circ} \mathrm{C}+25 \mu \mathrm{~A} /{ }^{\circ} \mathrm{C}$
200.000 mA	$0.1 \%+27 \mu \mathrm{~A}$	$0.14 \%+250 \mu \mathrm{~A}$	$0.15 \%+250 \mu \mathrm{~A}$	$0.0035 \% /{ }^{\circ} \mathrm{C}+25 \mu \mathrm{~A} /{ }^{\circ} \mathrm{C}$
$10.0000 \mathrm{~A}^{*}$	$0.02 \%+4 \mathrm{~mA}$	$0.035 \%+26 \mathrm{~mA}$	$0.035 \%+26 \mathrm{~mA}$	$0.007 \% /{ }^{\circ} \mathrm{C}+2.5 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$

*Requires 10 A shunt, CSM-10A.
Accuracy numbers are for $51 / 2$ digits and include the effects of full and zero scale errors, temperature variation, linearity, and noise.

Input Characteristics	
200 mA Shunt	
Input protection	Fuse F1 $500 \mathrm{~mA} / 250 \mathrm{~V}$ fast-fusing
Shunt resistor..	1Ω
Burden voltage	$<400 \mathrm{mV}$ at 200 mA
10 A Shunt	
Input protection.	Fuse F1 12.5 A/250 V fast-fusing
Shunt resistor..	$10 \mathrm{~m} \Omega$
Burden voltage	$<300 \mathrm{mV}$ at 10 A

Range	24 Hour $\left(25^{\circ} \mathrm{C} \pm 1{ }^{\circ} \mathrm{C}\right)$	90 Day $\left(25^{\circ} \mathrm{C} \pm 10{ }^{\circ} \mathrm{C}\right)$	1 Year $\left(25{ }^{\circ} \mathrm{C} \pm 10{ }^{\circ} \mathrm{C}\right)$	Temperature Coefficient $\left(\%\right.$ of reading $\left./{ }^{\circ} \mathrm{C} \pm \mathrm{mV} /{ }^{\circ} \mathrm{C}\right)$
250.000 V	$0.6 \%+500 \mathrm{mV}$	$0.62 \%+680 \mathrm{mV}$	$0.62 \%+680 \mathrm{mV}$	$0.007 \% /{ }^{\circ} \mathrm{C}+20 \mathrm{mV} /{ }^{\circ} \mathrm{C}$
25.0000 V	$0.3 \%+30 \mathrm{mV}$	$0.32 \%+210 \mathrm{mV}$	$0.32 \%+210 \mathrm{mV}$	$0.007 \% /{ }^{\circ} \mathrm{C}+20 \mathrm{mV} /{ }^{\circ} \mathrm{C}$
2.00000 V	$0.4 \%+3 \mathrm{mV}$	$0.42 \%+21 \mathrm{mV}$	$0.42 \%+21 \mathrm{mV}$	$0.019 \% /{ }^{\circ} \mathrm{C}+2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$
200.000 mV	$0.3 \%+0.22 \mathrm{mV}$	$0.32 \%+1.2 \mathrm{mV}$	$0.32 \%+1.2 \mathrm{mV}$	$0.007 \% /{ }^{\circ} \mathrm{C}+0.110 \mathrm{mV} /{ }^{\circ} \mathrm{C}$
20.0000 mV	$0.4 \%+100 \mu \mathrm{~V}$	$50.42 \%+170 \mu \mathrm{~V}$	$0.42 \%+170 \mu \mathrm{~V}$	$0.019 \% /{ }^{\circ} \mathrm{C}+12 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \mathrm{C}$

AC Voltage (Accuracy $=\%$ of reading $\pm \mathbf{m V}$)

Accuracy numbers are for $51 / 2$ digits and include the effects of full and zero-scale errors, temperature variation, linearity, and noise.
Noise Rejection
AC CMRR (DC to 60 Hz) \qquad $>80 \mathrm{~dB}$ (with a $1 \mathrm{k} \Omega$ imbalance in LO lead)

Input Characteristics

Input resistance ... $1 \mathrm{M} \Omega$ all ranges
Bandwidth. $20 \mathrm{~Hz}-25 \mathrm{kHz}$
Additional AC Errors

Input Frequency	Additional Error (\% of reading)
$20 \mathrm{~Hz}-50 \mathrm{~Hz}$	2.5%
$50 \mathrm{~Hz}-100 \mathrm{~Hz}$	1.0%
$100 \mathrm{~Hz}-5 \mathrm{kHz}$	0.0%
$5 \mathrm{~Hz}-10 \mathrm{kHz}$	1.0%
$10 \mathrm{~Hz}-25 \mathrm{kHz}$	2.5%

Frequency dependent errors

AC Current (Accuracy $=\%$ of reading $\pm \mathrm{mA}$)

Range	24 Hour $\left(25^{\circ} \mathrm{C} \pm 1{ }^{\circ} \mathrm{C}\right)$	90 Day $\left(25^{\circ} \mathrm{C} \pm 10{ }^{\circ} \mathrm{C}\right)$	1 Year $\left(25^{\circ} \mathrm{C} \pm 10{ }^{\circ} \mathrm{C}\right)$	Temperature Coefficient $\left(\%\right.$ of reading $\left./{ }^{\circ} \mathrm{C}+\mathrm{mA} /{ }^{\circ} \mathrm{C}\right)$
20.0000 mA	$0.35 \%+110 \mu \mathrm{~A}$	$0.37 \%+170 \mu \mathrm{~A}$	$0.37 \%+170 \mu \mathrm{~A}$	$0.019 \% /{ }^{\circ} \mathrm{C}+0.120 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$
200.000 mA	$0.45 \%+0.22 \mathrm{~mA}$	$0.47 \%+1.2 \mathrm{~mA}$	$0.47 \%+1.2 \mathrm{~mA}$	$0.007 \% /{ }^{\circ} \mathrm{C}+12 \mu \mathrm{~A} /{ }^{\circ} \mathrm{C}$
$10.0000 \mathrm{~A}^{*}$	$0.3 \%+22 \mathrm{~mA}$	$0.32 \%+120 \mathrm{~mA}$	$0.32 \%+120 \mathrm{~mA}$	$0.026 \% /{ }^{\circ} \mathrm{C}+11 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$

*Requires 10 A shunt, CSM-10A.
Accuracy numbers are for $51 / 2$ digits and include the effects of full and zero scale errors, temperature variation, linearity, and noise.

nput Characteristics

200 mA Shunt
Input protection Fuse F1 $500 \mathrm{~mA} / 250 \mathrm{~V}$ fast-fusing
Shunt resistor 1Ω
Burden voltage $<400 \mathrm{mV}$ at 200 mA
A Shunt
Input protection Fuse F1 $12.5 \mathrm{~A} / 250 \mathrm{~V}$ fast-fusing
Shunt resistor $10 \mathrm{~m} \Omega$
Burden voltage $<300 \mathrm{mV}$ at 10 A

Resistance (Accuracy $=\%$ of reading $\pm \Omega$)

Range	24 Hour $\left(25^{\circ} \mathrm{C} \pm 1{ }^{\circ} \mathrm{C}\right)$	90 Day $\left(25{ }^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}\right)$	Y Year $\left(25{ }^{\circ} \mathrm{C} \pm 10{ }^{\circ} \mathrm{C}\right)$	Temperature Coefficient $\left(\%\right.$ of reading $\left./{ }^{\circ} \mathrm{C} \pm \Omega /{ }^{\circ} \mathrm{C}\right)$
Extended ohm $(>2 \mathrm{M} \Omega)$	$0.1 \%+6 \mathrm{k} \Omega$	$0.1 \%+60 \mathrm{k} \Omega$	$0.1 \%+60 \mathrm{k} \Omega$	$0.0072 \% /{ }^{\circ} \mathrm{C}+6 \mathrm{k} \Omega /{ }^{\circ} \mathrm{C}$
$2.00000 \mathrm{M} \Omega$	$0.012 \%+55 \Omega$	$0.077 \%+370 \Omega$	$0.080 \%+20 \Omega$	$0.0072 \% /{ }^{\circ} \mathrm{C}+35 \Omega /{ }^{\circ} \mathrm{C}$
$200.000 \mathrm{k} \Omega$	$0.012 \%+37 \Omega$	$0.077 \%+350 \Omega$	$0.080 \%+2 \Omega$	$0.0072 \% /{ }^{\circ} \mathrm{C}+35 \Omega /{ }^{\circ} \mathrm{C}$
$20.0000 \mathrm{k} \Omega$	$0.006 \%+0.5 \Omega$	$0.024 \%+4 \Omega$	$0.027 \%+4 \Omega$	$0.0020 \% /{ }^{\circ} \mathrm{C}+0.40 \Omega /{ }^{\circ} \mathrm{C}$
$2.00000 \mathrm{k} \Omega$	$0.006 \%+0.4 \Omega$	$0.024 \%+4 \Omega$	$0.027 \%+4 \Omega$	$0.0020 \% /{ }^{\circ} \mathrm{C}+0.40 \Omega /{ }^{\circ} \mathrm{C} \mathrm{C}$
200.000Ω	$0.006 \%+0.4 \Omega$	$0.024 \%+4 \Omega$	$0.027 \%+4 \Omega$	$0.0020 \% /{ }^{\circ} \mathrm{C}+0.40 \Omega /{ }^{\circ} \mathrm{C}$

Accuracy numbers are for $51 / 2$ digits and include the effects of full and zero-scale errors, temperature variation, linearity and noise
Measurement modes
2-wire

Diode Testing (Accuracy $=\%$ of reading $\pm \mu \mathrm{V}$)

Range	24 Hour $\left(25^{\circ} \mathrm{C} \pm 1{ }^{\circ} \mathrm{C}\right)$	90 Day $\left(25^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}\right)$	1 Year $\left(25^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}\right)$	Temperature Coefficient $\left(\%\right.$ of reading $\left./{ }^{\circ} \mathrm{C} \pm \mu \mathrm{V} /{ }^{\circ} \mathrm{C}\right)$
2 V	$0.006 \%+60 \mu \mathrm{~V}$	$0.024 \%+400 \mu \mathrm{~V}$	$0.027 \%+400 \mu \mathrm{~V}$	$0.002 \% /{ }^{\circ} \mathrm{C}+40 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$

Accuracy numbers are for $51 / 2$ digits and include the effects of full and zero-scale errors, temperature variation, linearity, and noise.
Test current
$100 \mu \mathrm{~A}$

General Specifications

Settling time

Warm-up time
Altitude.

Working voltage

Power Requirement

+5 VDC .

Environmen

Operating temperature 0 to $55^{\circ} \mathrm{C}$
Storage temperature............................... -20 to $70^{\circ} \mathrm{C}$
Relative humidity .. 10 to 90%, noncondensing

Affected by source impedance and input signal changes 30 minutes for measurements accurate within specifications Up to $2,000 \mathrm{~m}$; at higher altitudes the installation category must be derated 250 V maximum between either input terminal and earth ground

45 mA in operational mode

Operating temperature 0 to $55^{\circ} \mathrm{C}$

Relative humidity

Certifications and Compliances
 CE Mark Compliance (ϵ

The product meets applicable EU directives for CE Mark compliance as follows Safety compliance IEC 1010-1 Certified, Designed for UL 3111, Low-Voltage Directive EN 61010-1, Installation Category II, Pollution Degree 2, Double Insulated, Indoor use.

[^0]: Visit ni.com for a more complete list of cables and accessories.

