Infiniium 9000 H-Series High-Definition Oscilloscopes **Data Sheet** **See Your Signals in HD** ## See Your Signals in HD The high-definition 9000 H-Series oscilloscope offers up to 12 bits of resolution, which represents 4096 quantization levels, for precision signal viewing. The 9000 H-Series' combination of hypersampling and linear noise reduction technology achieves a noise level up to three times lower than traditional 8-bit oscilloscopes. Engineered to provide low noise and high-dynamic-range measurement capability, these scopes also offer comprehensive measurement capability with MSO upgrades, a variety of apps, and compatibility with Agilent's probing portfolio. There is no better way to experience the superiority of the Infiniium 9000 H-Series than to see it. Contact Agilent today to request an evaluation. Or visit: www.agilent.com/find/9000H The Infiniium 9000 H-Series offers bandwidths up to 2 GHz. Each model, equipped with a large 15" XGA LCD display, comes in a whisper-quiet package that is just 9" (23 cm) deep and weighs only 26 pounds (11.8 kg). | | DSO9024H | DS09054H | DSO9104H | DS09204H | |------------------------|------------|-------------------|-----------------|--------------------| | Scope channels | 4 | 4 | 4 | 4 | | Bandwidth | 250 MHz | 500 MHz | 1 GHz | 2 GHz ¹ | | Max sample rate | 1.25 GSa/s | 2.5 GSa/s | 5 GSa/s | 10 GSa/s | | Standard memory (2-ch) | 100 Mpts | 100 Mpts 100 Mpts | | 100 Mpts | | Bits of resolution | | | 12 at < 500 MHz | 12 at < 500 MHz | | | 12 | 12 | 10 -+ 1 011- | 10 at 1 GHz | | | | | 10 at 1 GHz | 10 at 2 GHz | | Noise (at 100 mV/div) | 700 uV | 720 uV | 1.1 mV | 1.5 mV | | MSO and app upgrades | V | V | V | V | ^{1. 2} GHz bandwidth in 2-channel mode, and 1 GHz bandwidth when all 4 channels are enabled. ## What is an HD (High-Definition) Oscilloscope? ## What is an HD oscilloscope? - · High-definition scopes offer > 8 bits of vertical resolution to reveal more signal detail. - High-definition scopes must have significantly lower noise to view small detail normally masked by scope noise. - · MSO, application options, and probes give HD scopes greater utility. Infiniium 9000 H-Series offers 12 bits of resolution, 16X more than its counterparts with 8-bit ADCs as shown in this example. Uncover detail normally masked by scope noise. Infiniium 9000 H-Series hypersampling combined with linear averaging technology reduces noise by up to 3X versus 8-bit scopes of equivalent bandwidth. #### **Need to customize your scope?** The H-Series offers a wide range of debug, analysis, and compliance apps, along with MSO upgrades and ultrasensitive probes. ## Up to 12 bits of Resolution and 3X Less Noise ## How does hypersampling and linear noise reduction work? For traditional oscilloscopes, as a signal under test passes through the oscilloscope, front-end noise from the scope gets added to the signal, acquired, stored and displayed as shown below. As small V/div values or in high-dynamic range measurements, this approach is problematic as oscilloscopes noise can mask small signal detail. Agilent 9000 H-Series' hypersampling and linear noise reduction produces more precise viewing. - The hyper-sampled ADC produces up to 16 hypersamples in a group. - Each group vertical value is averaged, minimizing random noise that the scope added to the initial signal. - The resulting vertical group value is saved to scope memory at the scope's published sample rate and displayed. - · View clear, precise waveforms even at small V/div settings. Zoom on top of clean sin wave shows more noise with 8-bit scope Zoom on top of same clean sin wave with equal bandwidth 9000 H-Series scope shows significantly less noise ## What Makes the 9000H a Great HD Scope? Agilent's first high-definition scope, the 9000 H-Series, is built on Agilent's highly-successful 9000 Series frame. The 9000H incorporates two pieces of noise reduction technology not found natively in other Infiniium scopes. ## Hypersampled ADCs - · Low-pass front-end filter prevents aliased signal content. - Each ADC produces up to 16 'hypersamples" between each acquisition point. - Each hypersample vertical value includes random scope noise. - Hypersamples are not stored to acquisition memory, as any single individual hypersample carries a signal plus noise component. ## Linear Noise Reduction (LNR) - Hardware-based technology implemented across the scope's ADC, memory controller, and FPGA for DSP noise reduction. - DSP filter averages each group of hypersamples to cancel out noise across linear hypersamples. - The scope stores the group vertical average value to memory at the scope sample rate. - · Produces up to 4096 quantization levels. - · Reduces noise by 3X (at 12 bits of resolution). Infiniium 9000 H-Series acquisition boards incorporate HW-based hypersampling and LNR technology. See clear, precise waveforms without the noise a traditional scope would show. Zoom on top of square wave shows 3X more noise with 8-bit scope Zoom on top of square wave with equal bandwidth 9000 H-Series scope shows 3X less noise ## **Comprehensive Measurement Capability** In addition to precise waveform viewing, 9000 H-Series models incorporate the powerful scope capability found in all Infiniium oscilloscopes. You'll have the ability to access a large variety of automated measurements and signal views. Mask tests, histograms and a wide variety of functions provide deep signal analysis. #### Responsive deep memory With standard 100 Mpts (2-ch) of memory, 9000 H-Series oscilloscopes include the deepest standard memory in the industry. You can capture long time periods while retaining fast sample rates. ## Advanced triggering Advanced triggers are essential when you are investigating suspected problems. Infiniium offers a full range of advanced triggers to help you isolate and capture the condition you need to characterize. The 9000 H-Series simplifies trigger setups by using intuitive dialog boxes with descriptive graphics. ## Drag and drop measurements It's simple: drag an icon from the measurement bar and drop it on the cycle you want to measure. You can make up to ten measurements on your waveforms. All of the measurements appear at the bottom of the display with statistics and are color-coded to the channel you are measuring. ## Comprehensive Measurement Capability (Continued) If you're like most engineers, you never know what your next project will demand from you. You need an oscilloscope that can adapt to a wide variety of debug and test challenges. Use the MSO timing channels to evaluate control signal relationships and data buses up to 16 bits wide. Use symbols to more quickly interpret waveforms. Agilent's ultrasensitive N2820A/N2821A current probes excel at measuring with resolution as low as 50 uA for small current levels typically found in mobile devices. Or, the probes can be configured for current up to 5A. ## MSO Upgrade MSO upgrade can be done in less than 5 minutes and add 16 high-speed timing channels. ## **Applications** More than 20 optional apps can help give you faster insight. Does your design include a serial bus that is a key point for testing? Need additional analysis? See pages 8-12. #### **Probes** Choose from a wide variety of about 80 different current and voltage probes compatible with 9000 H-Series. This includes Agilent's ultrasensitive current probes. ## Widest Range of Optional Applications Trigger and view on-screen serial decode of I^2C packets. ### I²C/SPI serial trigger and decode (N5391B or Option 007 on new scope purchases) This application displays real-time time-aligned decode of I²C and SPI serial buses. Hardware-based triggering means triggering reliably, even on the most infrequent events. This application works on all models and can use any combination of scope or logic acquisition channels. For more information: www.agilent.com/find/9000 I2C-SPI Trigger on and decode RS-232/UART transmission. #### RS-232/UART serial decode and trigger (N5462B or Option 001 on new scope purchases) This application eliminates the need to manually decode bus traffic. Using data captured on the scope or logic channels, the application lets you easily view the information sent over an RS-232 RS-422, RS-485 or other UART serial buses. Display real-time time-aligned decode of transmit and receive lines. Hardware-based triggering means triggering reliably, even on the most infrequent events. This application works on all models and can use any combination of the scope or logic acquisition channels. For more information: www.agilent.com/find/9000_RS-232 Trigger on and decode CAN, LIN and FlexRay serial packets. ## CAN, LIN and FlexRay triggering and decode (N8803B or Option 008 on new scope purchases) Trigger on and view both protocol layer information and physical layer signal characteristics for CAN, LIN and FlexRay buses. Numerical decode values are automatically displayed and synchronized below the captured signal or seen in protocol viewer. Hardware-based triggering for CAN and LIN means triggering reliably, even on the most infrequent events. FlexRay uses software-based protocol triggering. This application works on all models and can use any combination of scope or logic acquisition channels. For more information: www.agilent.com/find/9000_CAN Import BSDL files and decode JTAG scan chain activity. ## JTAG (IEEE 1149.1) triggering and decode (N8817A or Option 042 on new scope purchases) This application displays real-time time-aligned decode of JTAG (IEEE 1149.1) TDI and TDO signals. The application eliminates the difficult task of manually determining JTAG TAP controller states, instruction and data register decode, and flags error conditions. The application includes scan chain description features including the ability to import .bsdl files for each device and displays device names and opcodes in the protocol listing. This application works on all models and can use any combination of scope or logic acquisition
channels. For more information: www.agilent.com/find/9000 JTAG Trigger on and decode SVID protocol. #### SVID protocol trigger and decode (N8812A or option 46 on new scope purchases) This application includes a suite of configurable protocol-level trigger conditions specific to SVID. When serial triggering is selected, the application enables special real-time triggering hardware to ensure the oscilloscope never misses a trigger when armed. The multi-tab protocol viewer includes correlation between the waveforms and the selected packet, enabling you to quickly move between the physical and protocol layer information using the time-correlated tracking marker. For more information: www.agilent.com/find/n8812a Trigger on and decode USB packets. #### USB serial trigger and protocol viewer (N5464B or Option 005 on new scope purchases) Trigger on and quickly view USB packets, payload, header and detail information. Powerful time-correlated views of waveform and symbol, to the bit level, make it easy to isolate communication faults to logic or analog sources. USB hardware-based triggering means triggering reliably, even on the most infrequent events. Low- and full-speed USB protocol is supported on digital and scope channels of all models. High-speed USB protocol is supported on scope channels of 1 GHz and 2 GHz models. For more information: www.agilent.com/find/9000_USB Check for USB compliance. ## USB 2.0 compliance testing (N5416A or Option 029 on new scope purchases) Quickly determine USB compliance with this USB-IF recognized solution. A setup wizard guides you through test selection and configuration. This application is USB-IF approved and supported on all 2 GHz models. For more information: www.agilent.com/find/9000_USB-compliance Validate Ethernet compliance. ## Ethernet compliance testing (N5392A or Option 021 on new scope purchases) Perform a wide range of electrical tests for 10-, 100-, and 1000-Base-T systems. An N5395C test fixture and N5396A jitter test cable speed compliance testing. This application is supported on all 500 MHz and higher bandwidth models. For more information: www.agilent.com/find/9000 ethernet Perform eMMC compliance. #### eMMC Compliance testing (N6465A or option 64 on new scope purchases) Use the eMMC application to test, debug and characterize your eMMC designs quickly and easily. It automatically configures the oscilloscope for each test and generates an informative HTML report at the end of the test. The application not only compares the results with the specification test limit but also includes margin analysis, which indicates how closely the device passes or fails each test. On top of that, the complex analysis of the eMMC signals is taken care of by the application, which saves the time and effort it would have taken to do the measurements manually. For more information: www.agilent.com/find/n6465a Identify signal integrity issues with InfiniiScan Zone — Qualify triggering. #### InfiniiScan event identification (N5415B or Option 009 on new scope purchases) Rapidly trigger on complex events and identify signal integrity issues. This innovative software quickly scans through thousands of acquired waveform cycles and isolates anomalous signal behavior. Up to eight zones across channels are available. This application is supported on all models. For more information: www.agilent.com/find/infiniiScan Conduct jitter analysis. ## EZJIT analysis software (E2681A or option 002 on new scope purchases) Quickly characterize and evaluate most commonly needed jitter measurements, including cycle-cycle, N-cycle, period, time-interval, error, setup and hold time, histograms, measurement trending and jitter spectrum. This application is supported on all models. For more information: www.agilent.com/find/EZJIT Analyze jitter plus RJ/DJ separation. # EZJIT Plus analysis software (N5400A or Option 004 on new scope purchases. To upgrade from EZJIT to EZJIT Plus, order N5401A.) $\label{eq:compliance} \begin{tabular}{ll} EZJIT\ Plus\ adds\ additional\ compliance\ views\ and\ an\ expanded\ measurement\ setup\ wizard\ to\ simplify\ and\ automate\ RJ/DJ\ separation\ for\ testing\ against\ industry\ standards. \end{tabular}$ This application is supported on all models. For more information: www.agilent.com/find/EZJITPlus Recover embedded clocks with serial data analysis (SDA). #### High-speed serial data analysis software (N5384A or Option 003 on new scope purchases) Quickly validate signal integrity for high-speed serial interfaces with embedded clocks. Recover embedded clocks synchronized with the analog waveform view. Build and validate eye diagrams. The SDA package also includes software-based bit-level triggering and decode for 8B/10B. This application is supported on all models. For more information: www.agilent.com/find/9000_SDA Use vector signal analysis software to see FFT-based spectrum analysis. ## Vector signal analysis software (89601B) Expand the measurement capability of your scope with the 89601B vector signal analysis software. This advanced DSP-based software takes the digitized signal data from the scope. Then it provides FFT-based spectrum analysis and wide-bandwidth digital modulation analysis for wireless communication signals such as WCDMA and cdma2000 and wireless networking signals such as 802.11 WiFi and 802.16 WiMax. Take advantage of the super-wide bandwidth of your scope to capture and evaluate radar signals. For more information: www.agilent.com/find/VSA Signal equalization using user-defined function. #### User-defined function (N5430A or Option 010 on new scope purchases) Install MATLAB $^{\otimes}$ on your scope and add your favorite MATLAB .m scripts as function operators and use them as standard waveform functions. This application is supported on all models and requires MATLAB software (not included with UDF) For more information: www.agilent.com/find/UDF Quickly automate oscilloscope measurements. ## User-definable application (5467A or Option 040 on new scope purchases) Rapidly develop your own automated measurements and tests. This application provides the framework you need to quickly program and automate any single or set of measurements the oscilloscope can make. The application also provides full control of other Agilent instruments and HTML reporting capabilities. For more information: www.agilent.com/find/9000_UDA ## Rapid FPGA debug. ## FPGA dynamic probe application (N5397A or Option 016 on new scope purchases) Agilent's MSO FPGA dynamic probe provides internal FPGA visibility and quick instrument setup using an innovative core-assisted debug approach. Measurement tasks that previously took hours can be done in seconds with a few mouse clicks. This application is supported with MSO upgrade. For more information: www.agilent.com/find/9000 xilinx # The contract of o Use your scope to quickly make and analyze power measurements. ## Power application (U1882A or Option 015 on new scope purchases) Agilent's power application provides a full suite of power measurements. Make more accurate power-supply efficiency measurements by using an U1880A de-skew fixture to de-skew your voltage and current probes. This application is supported on all models. For more information: www.agilent.com/find/9000_power-app #### InfiniiView Oscilloscope Analysis Software (N8900A) Wish you could do additional signal viewing, analysis and documentation tasks away from your scope and target system? With Agilent's InfiniiView oscilloscope analysis software you can. Capture waveforms on your scope, save to a file, and open the data record into Agilent's InfiniiView application. View, analyze, share, and document scope measurements anywhere your PC goes. # Agilent Oscilloscope Compare Agilent's real-time oscilloscope lineup in this bandwidth range includes the InfiniiVision 4000 X-Series, Infiniium 9000 H- and Infiniium 9000 Series oscilloscopes. Use the following selection guide to determine which best matches your specific needs. | | InfiniiVision 4000 X-Series | Infiniium 9000 H-Series | Infiniium 9000 Series | |--|-----------------------------|-------------------------|-------------------------| | Bandwidth | 200 MHz to 1.5 GHz | 250 MHz to 2 GHz | 600 MHz to 4 GHz | | Max sample rate | 5 GSa/s | 10 GSa/s | 20 GSa/s | | Standard memory (2-ch) | 4 Mpts | 100 Mpts | 40 Mpts | | Max bits of resolution (default setup) | 8 | 12 | 8 | | Display size | 12" capacitive touch screen | 15" touch screen | 15" touch screen | | Operating system | Embedded | Windows 7 | Windows 7 | | Internal storage | Limited | 250 GB HDD (SSD option) | 250 GB HDD (SSD option) | | Max update rate (waveforms/sec) | 1M | 2K | 4K | | Integrated function generator | V | | | | Noise at 100 mV/div with 1 GHz bandwidth | 2.4 mV | 1.1 mV | 2.4 mV | ## Agilent Infiniium 9000 H-Series Oscilloscopes Dedicated **single acquisition button** provides better control to capture a unique event. **Pressing horizontal delay knob** sets the delay to zero. A **zoom button** provides quick access to two screen-zoom modes. **MegaZoom instant response and optimum resolution** allows you to pan and zoom quickly. **Autoscale** lets you rapidly display any analog or digital active signals, automatically setting the vertical, horizontal and trigger controls for the best display, while optimizing memory. Digital channel button provides quick setup access. Serial decode button enables quick setup access. **Dedicated per-channel front panel controls** make it easy to access the vertical and horizontal scaling and offset. **Quick access to fine/vernier control** by pressing the horizontal and vertical sensitivity knobs. **AutoProbe interface** automatically configures the attenuation ratio of the probe and provides probe power for Agilent's active probes. **Built-in USB ports** makes it easy to save your work and update your system software quickly. Accessory pouch detaches easily. ## **Connectivity and
Probing** ## Connectivity #### **Industry compatibility** Export screen shots and waveforms in numerous industry-standard formats. In addition, the 9000 H-Series supports compatibility with the following IVI COM driver for application development environments such as Visual Studio, Agilent VEE, NI LabView and MATLAB instrument control toolbox. #### www.agilent.com/find/adn - IntuiLink tool bars and data capture. www.agilent.com/find/intuilink - LXI Class C including built-in Web control - NI LabView PnP and IVI drives www.agilent.com/find/ni9404 ## **Probing** Each Infiniium 9000 H-Series oscilloscope ships with four N2873A 10:1 divider passive probes and probe accessory pouch. With both 50 Ω and 1 M Ω inputs, Infiniium 9000 H-Series scopes support a wide range of probes, including Agilent's InfiniiMax and InfiniiMode Series probes. Agilent offers an innovative family of probes that are engineered for signal access and measurement accuracy. Whether you're looking for simple passive probes, the high bandwidth and low loading of an active probe, or specialty probes for current or high voltage, we can meet your needs. Our innovative accessories allow reliable connection to challenging components like small pitch devices, and surface mount. To see our entire award-winning portfolio of probes for Infiniium oscilloscopes, please view the *Infiniium Oscilloscope Probes and Accessories* data sheet, publication number 5968-7141EN. ## Recommended optional active probes | | Single-ended | InfiniiMax
(Differential/
Single-ended) | InfiniiMode
(Differential/Single-
ended/Common mode) | |----------|---------------|---|--| | DS09204H | 1157A 2.5 GHz | 1131A 3.5 GHz | N2751A 3.5 GHz | | DSO9104H | N2796A 2 GHz | 1130A 1.5 GHz | N2750A 1.5 GHz | | DS09054H | N2795A 1 GHz | 1130A 1.5 GHz | N2750A 1.5 GHz | | DS09024H | N2795A 1 GHz | 1130A 1.5 GHz | N2750A 1.5 GHz | ## N2820A/N2821A High-Sensitivity Current Probes Developing a battery powered product? Need to make your design more green and energy efficient? You need to make high-sensitivity, low-level current measurements to ensure the current consumption of your design is within acceptable limits. We've designed the N2820A Series highsensitivity current probes for you. Unlike traditional current probes, these are the industry's first that are designed using sense resistors. The result? You'll make the highestsensitivity current measurements with the widest dynamic range. The probes offer multiple ways to connect to your target and precisely view currents as small as 50 uA. | | Measurable current range | Dynamic range | Bandwidth | |--|---|-------------------|---| | N2820A
2-channel high-sensitivity current probe | 250 uA $-$ 5 A, AC/DC (with N2822A 20 mΩ) 50 uA $-$ 2.2 A, AC/DC (with N2824A 100 mΩ) | 20,000:1 or 86 dB | 3 MHz (zoom-out channel),
500 kHz (zoom-in channel) | | N2821A
1-channel normal-sensitivity current probe | | 1,000:1 or 60 dB | 3 MHz (zoom-out channel),
500 kHz (zoom-in channel) –
choose one or the other | Want to determine how much charge your design is consuming? Agilent's Infiniium oscilloscopes provide an area under the curve measurement (Charge) where you can easily calculate the integrated current consumptions over time in Coulombs. Both a zoomed-out view of the current, as well as a zoomed-in version that shows detail not normally seen with traditional probes. ## Infiniium 9000 H-Series Performance Characteristics | Vertical: scope channels | DSO9024H | DSO9054H | DSO9104H | DSO9204H | | |---|---|-------------------------------|--------------------------|--------------------|--| | Analog bandwidth (–3 dB) 50 Ω^1 $$ 1 $M\Omega$ | 250 MHz
250 MHz | 500 MHz
500 MHz | 1 GHz
500 MHz | 2 GHz
500 MHz | | | Typical Rise Time / Fall Time 10% to 90% at 50 Ω | 748 ps | 747 ps | 253 ps | 85 ps | | | Typical Rise Time / Fall Time 20% to 80% at 50 Ω | 512 ps | 511 ps | 174 ps | 59 ps | | | Input channels | DS09000H – 4 analog
MS0 upgrade – 4 analo | g + 16 digital | | | | | Input impedance ¹ | 50 Ω ±2.5%, 1 MΩ ±1% | (11pF typical) | | | | | Input sensitivity ³ | 1 MΩ: 1 mV/div to 5 V/
50 Ω: 1 mV/div to 1 V/ | | | | | | Input coupling | 1 MΩ: AC (3.5 Hz), DC
50 Ω:DC | | | | | | Bandwidth limit | 20 MHz on 1 MΩ input | ; 500 MHz up to full | scope bandwidth in inc | rements of 500 MHz | | | Vertical bits of resolution ^{2,3} | 12 at < 500 MHz
10 at 1 GHz
10 at 2 GHz | | | | | | Channel-to-channel isolation | DC to 50 MHz: 50 dB
> 50 MHz to 2 GHz: 40 dB | | | | | | DC gain accuracy ^{1,2,3} | ±2% of full scale at full
(typically < 1% at cal te | | el scale ±5 °C from cal | temp | | | Maximum input voltage ¹ | 1 MΩ: 150V RMS or DC
± 250 V (DC +
50 Ω: 5 Vrms | , CAT I
AC) in AC coupling | | | | | Offset range 1 $M\Omega$ | Vertical sensitivity 1 mV to < 10 mV/div 10 mV to < 20 mV/div 20 mV to < 100 mV/div 100 mV to < 1 V/div 1 V to 5 V/div | ±2 V
±5 V | I
I | | | | 50 Ω | . • 60 0 •/ 41• | | liv or ±4V, whichever is | smallest | | ^{1.—3} db typical,—4 db warranted specification. Specifications are valid after a 30-minute warm-up period and ±5 °C from firmware calibration temperature. Input impedance is valid when V/div scaling is adjusted to show all waveform vertical values within scope display. ^{2.} Vertical resolution for 12 bits = 0.024% of full scale. ^{3. 50}Ω input: Full scale is defined as 8 vertical divisions. Magnification is used below 10mV/div. The major scale settings are 5 mV, 10 mV, 20 mV, 50 mV, 100 mV, 200 mV, 500 mV, 1 V. 1MΩ input: Full scale is defined as 8 vertical divisions. Magnification is used below 5mV/div, full-scale is defined as 40 mV. The major scale settings are 5 mV, 10 mV, 20 mV, 50 mV, 100 mV, 200 mV, 100 mV, 200 mV, 500 mV, 1 V, 2 V, 5 V | Vertical: scope channels (con't) | | | | |--|--|--|--| | Offset accuracy ^{1,3} | $\pm (1.25\% \text{ of channel offset} + 1\% \text{ of full scale} + 1 \text{ mV})$ | | | | Dynamic range | 1 M Ω : ± 8 div from center screen 50 Ω : ± 8 div from center screen | | | | DC voltage measurement accuracy ² | | | | | | Dual cursor
Single cursor | ±[(DC gain accuracy) + (resolution)]
±[(DC gain accuracy) + (offset accuracy) + (resolution/2)] | | # RMS Noise Floor (V $_{\rm RMS\,AC}$) | Volts/div | DS09024H | DS09054H | DS09104H | DSO9204H | |-----------|----------|----------|----------|----------| | 10 mV | 95 uV | 94 uV | 181 uV | 210 uV | | 20 mV | 135 uV | 137 uV | 279 uV | 290 uV | | 50 mV | 370 uV | 370 uV | 641 uV | 790 uV | | 100 mV | 710 uV | 720 uV | 1.2 mV | 1.5 mV | | 200 mV | 1.4 mV | 1.4 mV | 2.5 mV | 3 mV | | 500 mV | 3.6 mV | 3.7 mV | 6.2 mV | 8 mV | | 1 V | 7.1 mV | 7.1 mV | 11.6 mV | 15 mV | | Vertical: digital channels | On MSO upgrades | |--------------------------------|---| | Input channels | 16 digital channels | | Threshold groupings | 16 digital channels Pod 2: D15 – D8, Pod 1: D7 - D0 | | Threshold selections | TTL (1.4V), CMOS, (5.0V, 3.3V, 2.5V), ECL (-1.3V), PECL (3.7V), user defined (±8.00 V in 100 mV increments) | | Maximum input voltage | ±40 V peak CAT I | | Threshold accuracy | \pm (100 mV + 3% of threshold setting) | | Input dynamic range | ±10 V about threshold | | Minimum input voltage swing | 500 mV peak-to-peak | | Input impedance (flying leads) | 100 k Ω ±2% (~ 8 pF) at probe tip | | Resolution | 1 bit | | Analog bandwidth | 400 MHz | | Horizontal | | |---|--| | Channel-to-channel skew (digital MSO upgrade) | 2 ns typical | | Glitch detect (digital MSO upgrade) | ≥ 2.0 ns | | Main time base range | 5 ps/div to 20 s/div | | Horizontal position range | 0 to ±200 s | | Delayed sweep range | 1 ps/div to current main time base setting | | Resolution | 1 ps | | Modes | Main, delayed, roll (200 ms to 20 sec) | | Reference positions | Left, center, right | | Channel deskew | -1 ms to +1 ms range | | Time scale accuracy | $\pm (0.4 + 0.5 * YrsSinceCal)$ ppm pk | ^{1.} -3 db typical, -4 db warranted specification. Specifications are valid after a 30-minute warm-up period and ± 5 °C from firmware calibration temperature. 2. Vertical resolution for 8 bits = 0.4% of full scale, for 12 bits = 0.024% of full scale. ^{3. 50}Ω input: Full scale is defined as 8 vertical divisions. The major scale settings are 5mV, 10mV, 20mV, 50 mV, 100 mV, 200 mV, 500 mV, 1V. $1M\Omega$ input: Full scale is defined as 8 vertical divisions. The major scale settings are 5mV, 10mV, 20mV, 50 mV, 100 mV, 200 mV, 50 0mV, 1V, 2V, 5V. | | | 9024 | 9054 | 9104 | 9204 | |--------------------|------|------------|-----------|---------|----------| | Max
sample rate | 2-ch | 1.25 GSa/s | 2.5 GSa/s | 5 GSa/s | 10 GSa/s | | Sample rate | 4-ch | 1.25 GSa/s | 2.5 GSa/s | 5 GSa/s | 5 GSa/s | | | | Option 100 | | Option 200 | | Option 500 | | |--------------|------------|------------|----------|------------|----------|------------|----------| | Memory depth | | 2-ch | 4-ch | 2-ch | 4-ch | 2-ch | 4-ch | | per channel | Single | 200 Mpts | 100 Mpts | 400 Mpts | 200
Mpts | 500 Mpts | 250 Mpts | | | Repetitive | 200 Mpts | 100 Mpts | 200 Mpts | 100 Mpts | 256 Mpts | 128 Mpts | ## Sampling Modes Real-time 12 bits of resolution at 250 MHz 12 bits of resolution up to 500 MHz 10 bits of resolution at 1 GHz 10 bits of resolution at 2 GHz Real-time with roll mode (200 ms to 20 sec. per division) Segmented memory (1 ps time stamp resolution between segments) Up to 8192 segments for 20 Mpts standard memory, up to 131,072 segments with Option 500 Maximum time between triggers is 562,950 seconds (6.5 days) Re-arm time (minimum time between trigger events) is 4.5 µs with analog channels, 5.8 µs with digital channels on **Filters** Sin (x) / x Interpolation | Acquisition: digital channels (MSO upgrades) | | | | | |--|--|--|--|--| | Maximum real time sample rate | 2 GSa/s | | | | | Maximum memory depth per channel | 128/64 Mpts with 2 GSa/s. 64/32 Mpts with sampling < 2 GSa/s (single/repetitive mode). | | | | | Minimum width glitch detection | 2 ns | | | | | Trigger: scope channels | | | | | |---|--|--|--|--| | Trigger sources | Channel 1, channel 2, channel 3, channel 4, aux, and line | | | | | Sensitivity | 1 MΩ input, edge trigger, | DC to 500 MHz: 0.6 div | | | | | 50 Ω | DC to 2 GHz, 0.5 div | | | | | | 2 GHz to 4 GHz: 1.0 div | | | | | Auxiliary | DC to 700 MHz: 300 mVp-p | | | | Trigger level range | \pm 8 V at 5 V/div, < 5 V/div \pm 4 div from center screen (50 Ω) | | | | | Channel 1,2,3,4 | \pm 8 V at 5 V/div, < 5 V/div \pm 8 div from center screen (1 M Ω) | | | | | Auxiliary | \pm 5 V (50 $\!\Omega$ up to 500 MHz with at least 500 mV signal swing) | | | | | Sweep modes | Auto, triggered, single | | | | | Display jitter (displayed trigger jitter) | Typical of 1-2 ps | | | | | Trigger holdoff range | 100 ns to 10 s fixed and random | | | | | Trigger actions | Specify an action to occur, and the frequency of the action, when a trigger condition occurs. Actions include: e-mail on trigger and execute "multipurpose" user settings | | | | | Trigger coupling 1 MΩ: DC, AC, (10 H | z) low frequency reject (50 kHZ hig | h pass filter), high frequency reject (50 kHz low pass filter) | | | | | | | | | | Threshold range (user defined) | ±8.0 V in 100-mV increments | | | | | |--------------------------------|---|--|--|--|--| | Threshold accuracy | ±(100 mV + 3% of threshold setting) | | | | | | | | | | | | | Measurements and math | | | | | | | Waveform measurements | (can be made on either min or zoom window with up to 10 simultaneous measurements with statistics) | | | | | | Voltage (scope channels) | Peak-to-peak, minimum, maximum, average, RMS, amplitude, base, top, overshoot, V overshoot, preshoot, V preshoot, upper, middle, lower, crossing point voltage, pulse top, pulse base, pulse amplitude | | | | | | Time (digital channels) | Period, frequency, positive width, negative width, duty cycle, delta time | | | | | | Time (scope channels) | Rise time, fall time, period, frequency, positive width, negative width, duty cycle, Tmin, Tmax, Tvolt, channel-to-channel delta time, channel-to-channel phase, count pulses, burst width, burst period, burst interval, setup time, hold time | | | | | | Mixed (scope channels only) | Area, slew rate | | | | | | Frequency domain | FFT frequency, FFT magnitude, FFT delta frequency, FFT delta magnitude | | | | | | Level qualification | Any channels that are not involved in a measurement can be used to level-qualify all timing measurements | | | | | | Eye-diagram measurements | Eye height, eye width, eye jitter, crossing percentage, Q factor, and duty-cycle distortion | | | | | | Measurement modes | | | | | | | Statistics | Displays the mean, standard deviation, minimum, maximum range, and number of measurement values for the displayed automatic measurements | | | | | | Histograms (scope channels) | | | | | | | Source | Waveform or measurement (histogram on measurement requires EZJIT or EZJIT+ option) | | | | | | Orientation | Vertical (for timing and jitter measurements) or horizontal (noise and amplitude change) modes, | | | | | Measurements Marker modes Waveform math Trigger: digital channels MSO upgrade Number of functions Operators Abso Absolute value, add, average, Butterworth², common mode, differentiate, divide, FFT magnitude, FFT phase, FIR¹¹, high pass filter, integrate, invert, LFE², low pass filter (4th-order Bessel Thompson filter), magnify, max, min, multiply, RT Eye², smoothing, SqrtSumOfSquare², square, square root, subtract, versus Chartesta (MSO models), about in in a (MSO models). Mean, standard deviation, mean ± 1, 2, and 3 sigma, median, mode, peak-to-peak, min, max, total Chartstate (MSO models), charttiming (MSO models) regions are defined using waveform markers hits, peak (area of most hits), X scale hits, and X offset hits Manual markers, track waveform data, track measurements Automatic measurements Multipurpose Drag-and-drop measurement toolbar Measure menu access to all measurements, ten measurements can be displayed simultaneously Front-panel button activates up to ten pre-selected or ten user-defined automatic measurements Measurement toolbar with common measurement icons that can be dragged and dropped onto the displayed waveforms FFT Frequency settings Start, stop, CF, span, resolution BW Window modes Hanning, flattop, rectangular , Blackman Harris, Force ^{2.} Requires MATLAB software. | Trigger modes | | | | | |--|--|--|--|--| | Edge (analog and digital) | Triggers on a specified slope (rising, falling or alternating between rising and falling) and voltage level on any channel. | | | | | Edge transition (analog) | Trigger on rising or falling edges that cross two voltage levels in > or < the amount of time specified. Edge transition setting from 250 ps. | | | | | Edge then edge (time) (analog and digital) | The trigger is qualified by an edge. After a specified time delay between 10 ns to 10 s, a rising or falling edge on any one selected input will generate the trigger. | | | | | Edge then edge (event)
(analog and digital) | The trigger is qualified by an edge. After a specified delay between 1 to 16,000,000 rising or falling edges, another rising or falling edge on any one selected input will generate the trigger. | | | | | Glitch (analog and digital) | Triggers on glitches narrower than the other pulses in your waveform by specifying a width less tha your narrowest pulse and a polarity. Glitch range settings equal pulse width settings | | | | | Line | Triggers on the line voltage powering the oscilloscope. | | | | | Pulse width (analog and digital) | Trigger on a pulse that is wider or narrower than specified. | | | | | 2 GHz model | Minimum detectable pulse width: 200 ps for analog channels, 1 ns for digital channels. Pulse width range settings: 350 ps to 10 s for analog channels, 2 ns to 10 s for digital channels. | | | | | 1 GHz, 500 MHz, 250 MHz models | Minimum detectable pulse width: 500 ps for analog channels, 1 ns for digital channels. Pulse width range settings: 700 ps to 10 s for analog channels, 2 ns to 10 s for digital channels. | | | | | Runt (analog) | Triggers on a pulse that crosses one threshold but fails to cross a second threshold before crossing the first again. Runt settings equal pulse width settings. | | | | | Timeout (analog and digital) | Trigger when a channel stays high, low, or unchanged for too long. Timeout settings equal pulse width settings. | | | | | Pattern/pulse range
(analog and digital) | Triggers when a specified logical combination of the channels is entered, exited, present for a specified period of time or is within a specified time range or times out. Each channel can have a value of High (H), Low (L) or Don't care (X). | | | | | State (analog and digital) | Pattern trigger clocked by the rising, falling or alternating between rising and falling edge of one channel. | | | | | Setup/hold (analog) | Triggers on setup, hold, or setup and hold violations in your circuit. Requires a clock and data signal on any two inputs (except aux or line) channels as trigger sources. Setup and/or hold time must then be specified. | | | | | Window (analog) | Trigger on entering, exiting, or inside specified voltage range | | | | | Video (analog) | NTSC, PAL-M(525/60), PAL, SECAM(625,50) EDTV(480p/60), EDTV(576/50), HDTV(720p/60), HDTV(720p/50) HDTV(1080i/60) | | | | | Serial (analog and digital) | Requires specified serial software option, I ² C, SPI, CAN, LIN,FlexRay, RS-232/UART, JTAG, USB, SVIP | | | | | Zone-qualified | Requires InfiniiScan software option. SW-based triggering across up to 8 user-drawn zones. For each zone, user specifies "must intersect" or "must not intersect." Zones can be drawn on multiple channels and combined using Boolean expressions. | | | | | Display | | | | | |------------------------------------|--|--|--|--| | Display | 15 inch color XGA TFT-LCD with touch screen | | | | |
Display intensity grayscale | 64-level intensity-graded display | | | | | Resolution | 1024 pixels horizontally x 768 pixels vertically | | | | | Annotation | Up to 12 labels, with up to 100 characters each, can be inserted into the waveform area | | | | | Grids | Can display 1, 2 or 4 waveform grids | | | | | Waveform styles | Connected dots, dots, variable persistence, infinite persistence, color graded infinite persistence. Includes up to 64 levels of intensity-graded waveforms. | | | | | Waveform update rate | Segmented mode: Maximum up to 250,000 waveforms/sec | | | | | (10 GS/s, 50 ns/div, sin(x)/x: on) | Real time mode Maximum of 3,000 waveforms/sec. | | | | | | Typical of 1,100 waveforms/sec with 1kpts memory. | | | | | | Typical of 200 waveforms/sec with 100 kpts memory | | | | | | Typical of 35 waveforms/sec with 1 Mpts memory | | | | | | Typical of 5 waveforms/sec with 10 Mpts | | | | | Computer system and peripl | nerals, I/O ports | |---------------------------------|--| | Computer system and peripherals | · | | Operating system | Windows 7 Embedded Standard | | CPU | Intel® Core 2 Duo, M890, 3.0 GHz microprocessor | | PC system memory | 4 GB | | Drives | ≥ 250-Gb internal hard drive (Option 801 solid state drive), external DVD-RW drive (optional) | | Peripherals | Optical USB mouse and compact keyboard supplied. All Infiniium models support any Windows-compatible input device with a PS/2 or USB interface. | | File types | | | Waveforms | Compressed internal format (*.wfm), comma separated values (*.csv), .hdf5, .bin, tab separated values (*.tsv), ability to save .osc (composite including both setup and waveform. | | | and Y value files (*.txt) | | Images | BMP, TIFF, GIF, PNG or JPEG | | I/O ports | | | LAN | RJ-45 connector, supports 10Base-T, 100Base-T, and 1000Base-T. Enables Web-enabled remote control, e-mail on trigger, data/file transfers and network printing. | | RS-232 (serial) | 9-pin, COM1, pointing device support | | PS/2 | Two ports. Supports PS/2 pointing and input devices. | | USB 2.0 Hi-Speed | Three 2.0 high-speed ports on front panel plus four ports on side panel. Allows connection of USB peripherals like storage devices and pointing devices while the oscilloscope is on. One device port on side for instrument control | | Video output | 15 pin XGA on side of scope, full output of scope display or dual monitor video output, DVI | | Auxiliary output | DC (\pm 2.4 V); square wave ~755 Hz with ~200 ps rise time. | | Time base reference output | 10 MHz, Amplitude into 50 ohms: 800 mV pp to 1.26 V pp (4 dBm ±2 dB) if derived from internal reference. Tracks external reference input amplitude ±1 dB if applied and selected. | | Time base reference input | Must be 10 MHz, input Z = 50 ohms. Minimum 500 mV pp (-2 dBm), maximum 2.0 V pp ($+10$ dBm | | LXI compliance | LXI Class C | | General characteristics | | | | | |----------------------------------|--|--|--|--| | Temperature | | | | | | Operating | 5 °C to + 40 °C | | | | | Non-operating | -40 °C to + 65 °C | | | | | Humidity | | | | | | Operating | Up to 95% relative humidity (non-condensing) at +40 °C | | | | | Non-operating | Up to 90% relative humidity at +65 °C | | | | | Altitude | | | | | | Operating | Up to 4,000 meters (12,000 feet) | | | | | Non-operating | Up to 15,300 meters (50,000 feet) | | | | | Vibration | | | | | | Operating | Random vibration 5-500 Hz, 10 minutes per axis, 0.3 g (rms) | | | | | Non-operating | Random vibration 5-500 Hz, 10 minutes per axis, 2.41 g (rms); resonant search 5-500 Hz, swept sine, | | | | | | 1 octave/minute sweep rate, (0.75 g), 5 minute resonant dwell at 4 resonances per axis | | | | | Power | 100-120 V, ± 10% 50/60/400 Hz | | | | | | 100-240 V, ± 10% 50/60 Hz | | | | | | Max power dissipated: 375 W | | | | | Typical operator noise | 30 dB at front of instrument | | | | | Weight | Net: 11.8 kg (26 lbs.) Shipping: 17.8 kg (39 lbs.) | | | | | Dimensions (with feet retracted) | Height: 12.9 in (33 cm); width: 16.8 in (43 cm); depth: 9 in (23 cm) | | | | | Safety | Meets IEC1010-1 Second Edition, certified to UL61010-1 and CAN/CSA-C22.2 No 61010-1 Second Edition (IEC61010-1:2001, MOD). | | | | ## Infiniium 9000 H-Series Ordering Information ## How to configure an Infiniium 9000 Series - 1. Choose needed bandwidth - 2. Choose MSO upgrade if desired - 3. Choose desired software applications - 4. Choose memory depth upgrade - 5. Choose any additional probes and accessories ## Accessories included: All models ship standard with: - 1-year warranty - Four N2873A 500 MHz passive probes - · Probe accessory pouch (mounts on rear of instrument - Agilent I/O libraries suite 15.0 - Localized power cord, front panel cover, keyboard, mouse, and stylus - User guide and programmer's guide ship on oscilloscope hard drive. Service guide available on Agilent.com. | | DSO9024H | DS09054H | DSO9104H | DS09204H | |--|-----------|------------------|------------------|--------------------| | Scope channels | 4 | 4 | 4 | 4 | | Bandwidth 250 MHz | | 500 MHz | 1 GHz | 2 GHz ¹ | | Max sample rate 1.25 GSa/s | | 2.5 GSa/s | 5 GSa/s | 10 GSa/s | | Standard memory (2-ch/4-ch) 100 Mpts/50 Mpts | | 100 Mpts/50 Mpts | 100 Mpts/50 Mpts | 100 Mpts/50 Mpts | | Bits of resolution | | | 12 at < 500 MHz | 12 at < 500 MHz | | | 12 | 12 | 10 . 1 011 | 10 at 1 GHz | | | | | 10 at 1 GHz | 10 at 2 GHz | | Noise (at 100 mV/div) | 700 uV | 720 uV | 1.1 mV | 1.5 mV | | MSO and app upgrades | $\sqrt{}$ | $\sqrt{}$ | $\sqrt{}$ | V | ^{1. 2} GHz bandwidth in 2-channel mode, and 1 GHz bandwidth when all 4 channels are enabled. | Additional options and accessories | | | | | |------------------------------------|--|--|--|--| | Option A6J | ANSI Z540 compliant calibration | | | | | DSO9000A-820 | External DVD-RW with USB connection | | | | | N2902A or Option 1CM (8U) | 9000 Series oscilloscope rackmount kit | | | | | Option 801 | Removable SSD (solid state drive) | | | | | N2746A (requires Option 801) | Additional SSD Windows 7 | | | | | Gemstar 5000 custom-molded case | Available from www.gemstarmfg.com | | | | | N2918B | Infiniium 9000 H-Series Evaluation Kit | | | | | N4865A | GPIB to LAN adapter | | | | Quickly remove your SSD for additional security with Option 801. Mount your 9000 H-Series scope in an 8U high, 19" (487mm) wide rack with option ICM. # Infiniium 9000 H-Series Ordering Information | Software applications | Factory-installed
option for new scope
purchases | User-installed
stand-alone
product number | User-installed
floating license
(N5435A option) | |---|--|---|---| | RS-232/UART triggering and decode | 001 | N5462B | 031 | | EZJIT jitter analysis software | 002 | E2681A | 002 | | High-speed SDA and clock recovery | 003 | N5384A | 003 | | EZJIT Plus jitter analysis software | 004 | N5400A | 001 | | USB triggering and decode | 005 | N5464B | 034 | | I ² C/SPI triggering and decode | 007 | N5391B | 006 | | CAN, LIN, and FlexRay triggering and decode | 008 | N8803B | 033 | | InfiniiScan | 009 | N5415B | 004 | | User-defined function | 010 | N5430A | 005 | | Power measurement application software | 015 | U1882A | | | Xilinx FPGA dynamic probe | 016 | N5397A | | | RS-232, SPI and I ² C triggering and decode bundle | 018 | N8800B | | | Ethernet compliance application | 021 | N5392A | 008 | | USB2.0 compliance application | 029 | N5416A | 017 | | User definable application | 040 | N5467A | | | JTAG (IEEE 1149.1) triggering and decode | 042 | N8817A | 038 | | USB HSIC compliance test | 043 | U7248 | 042 | | SVID protocol triggering and decode | 046 | N8812A | 054 | | Communication mask test kit | | E2625A | | | MATLAB basic | 061 | | | | MATLAB advanced | 062 | | | | Precision Probe | | N2808A | 044 | | eMMC compliance | 064 | N6465A | 061 | | MOST compliance | 073 | N6466A | 068 | | BroadR-Reach compliance | 065 | N6467A | 062 | ## **Upgrades** ## **DSO** to MSO upgrades (N2901A/B/C/D) Upgrade your existing DSO to an MSO model in 5 minutes. The upgrade kit turns on all MSO capability and includes an MSO cable, 16-channel lead set with grabbers, an MSO-enabled sticker, and a digital-analog deskew fixture. ## Post-sales upgrades | DSO → MSO upgrades | | | | |--------------------|-----------------------------------|--|--| | N2901D | DSO9024H/DSO9054H MSO Upgrade Kit | | | | N2901A | DSO9104H MSO Upgrade Kit | | | | N2901B | DS09254H MS0 Upgrade Kit | | | ## **Additional acquisition memory** (N2900A or Options 100, 200, and 500 on new scope purchase) Increase memory depth to capture longer time periods and maintain faster speeds. ## Memory upgrade Need additional acquisition memory? Memory upgrades can be ordered as a factory-installed option for new oscilloscopes or using N2900A for a user-installed upgrade. Memory upgrade option depths are identical for factory installation or user installation and are described in the chart below. | | Run | Stan | dard | Optio | n 100 | Optio | n 200 | Optio | n 500 | |----------------------|------------|----------|---------|----------|----------|----------|----------|----------|----------| | Memory | mode | 2-ch | 4-ch | 2-ch | 4-ch | 2-ch | 4-ch | 2-ch | 4-ch | | depth per
channel | Single | 100 Mpts | 50 Mpts | 200 Mpts | 100 Mpts | 400 Mpts | 200 Mpts | 500 Mpts | 250 Mpts | | onamior | Repetitive | 100 Mpts | 50 Mpts | 200 Mpts | 100 Mpts |
200 Mpts | 100 Mpts | 256 Mpts | 128 Mpts | #### www.agilent.com/find/myagilent A personalized view into the information most relevant to you. #### www.axiestandard.org AdvancedTCA® Extensions for Instrumentation and Test (AXIe) is an open standard that extends the AdvancedTCA for general purpose and semiconductor test. Agilent is a founding member of the AXIe consortium. #### www.lxistandard.org LAN eXtensions for Instruments puts the power of Ethernet and the Web inside your test systems. Agilent is a founding member of the LXI consortium. #### **Agilent Channel Partners** ## www.agilent.com/find/channelpartners Get the best of both worlds: Agilent's measurement expertise and product breadth, combined with channel partner convenience. ## Three-Year Warranty #### www.agilent.com/find/ThreeYearWarranty Agilent's combination of product reliability and three-year warranty coverage is another way we help you achieve your business goals: increased confidence in uptime, reduced cost of ownership and greater convenience. ## **Agilent Advantage Services** ## www.agilent.com/find/AdvantageServices Accurate measurements throughout the life of your instruments. #### www.agilent.com/quality PCI Express and PCIe are registered trademarks of PCI-SIG. MATLAB is a U.S. registered trademark of The MathWorks, Inc. ## Agilent Technologies Oscilloscopes Multiple form factors from 20 MHz to > 90 GHz | Industry leading specs | Powerful applications ## www.agilent.com www.agilent.com/find/9000H For more information on Agilent Technologies' products, applications or services, please contact your local Agilent office. The complete list is available at: www.agilent.com/find/contactus #### **Americas** | Canada | (877) 894 4414 | |---------------|----------------| | Brazil | (11) 4197 3600 | | Mexico | 01800 5064 800 | | United States | (800) 829 4444 | #### **Asia Pacific** | Australia | 1 800 629 485 | |--------------------|----------------| | China | 800 810 0189 | | Hong Kong | 800 938 693 | | India | 1 800 112 929 | | Japan | 0120 (421) 345 | | Korea | 080 769 0800 | | Malaysia | 1 800 888 848 | | Singapore | 1 800 375 8100 | | Taiwan | 0800 047 866 | | Other AP Countries | (65) 375 8100 | **Europe & Middle East** | Belgium | 32 (0) 2 404 93 40 | |----------------|----------------------| | Denmark | 45 45 80 12 15 | | Finland | 358 (0) 10 855 2100 | | France | 0825 010 700* | | | *0.125 €/minute | | Germany | 49 (0) 7031 464 6333 | | Ireland | 1890 924 204 | | Israel | 972-3-9288-504/544 | | Italy | 39 02 92 60 8484 | | Netherlands | 31 (0) 20 547 2111 | | Spain | 34 (91) 631 3300 | | Sweden | 0200-88 22 55 | | United Kingdom | 44 (0) 118 927 6201 | | | | For other unlisted countries: www.agilent.com/find/contactus (BP2-19-13) Product specifications and descriptions in this document subject to change without notice. © Agilent Technologies, Inc. 2012,2013 Published in USA, April 24, 2013 5991-1520EN