

10 Hz to $3.6,7.0,13.6,26.5,32$, or 44 GHz
Data Sheet

This data sheet is a summary of the specifications and conditions for EXA and Express EXA signal analyzers. For the complete specifications guide, visit: www.agilent.com/find/exa_specifications

Table of Contents

Definitions and Conditions 3
Frequency and Time Specifications. 4
Amplitude Accuracy and Range Specifications 6
Dynamic Range Specifications 9
PowerSuite Measurement Specifications 15
General Specifications 16
Inputs and Outputs 17
I/Q Analyzer 19
Related Literature 21

Balance the Challenges

Whether you're focused on time-
to-market, time-to-volume, or cost of test, your choice of economyclass signal analyzer should help you save both time and money. That's the idea that drives the Agilent EXA signal analyzer - and it's the fastest way to maximize throughput on the production line. From measurement speed to code compatibility, it makes every millisecond count and helps reduce your overall cost of test.

Definitions and Conditions

Specifications describe the performance of parameters covered by the product warranty and apply to the full temperature of 0 to $55^{\circ} \mathrm{C}$, unless otherwise noted.

95th percentile values indicate the breadth of the population (approx. 2σ) of performance tolerances expected to be met in 95 percent of the cases with a 95 percent confidence, for any ambient temperature in the range of 20 to $30^{\circ} \mathrm{C}$. In addition to the statistical observations of a sample of instruments, these values include the effects of the uncertainties of external calibration references. These values are not warranted. These values are updated occasionally if a significant change in the statistically observed behavior of production instruments is observed.

Typical describes additional product performance information that is not covered by the product warranty. It is performance beyond specifications that 80 percent of the units exhibit with a 95 percent confidence level over the temperature range 20 to $30^{\circ} \mathrm{C}$. Typical performance does not include measurement uncertainty.

Nominal values indicate expected performance, or describe product performance that is useful in the application of the product, but are not covered by the product warranty.

The analyzer will meet its specifications when:

- It is within its calibration cycle
- Under auto couple control, except when Auto Sweep Time Rules = Accy
- Signal frequencies $<10 \mathrm{MHz}$, with DC coupling applied
- The analyzer has been stored at an ambient temperature within the allowed operating range for at least two hours before being turned on; if it had previously been stored at a temperature range inside the allowed storage range, but outside the allowed operating range
- The analyzer has been turned on at least 30 minutes with Auto Align set to normal, or, if Auto Align is set to off or partial, alignments must have been run recently enough to prevent an Alert message; if the Alert condition is changed from Time and Temperature to one of the disabled duration choices, the analyzer may fail to meet specifications without informing the user

For the complete specifications guide, visit:
www.agilent.com/find/exa_specifications

1. For earlier instruments (Serial number prefix <MY/SG/US5052), the full temperature ranges from 5 to $50^{\circ} \mathrm{C}$.

Get More Information

This EXA signal analyzer data sheet is a summary of the specifications and conditions for N9010A EXA and N9010AEP Express EXA signal analyzers, which are available in the EXA Signal Analyzer Specification Guide (N9010-90025).

For ordering information, refer to the EXA Signal Analyzer Configuration Guide
(5989-6531EN).

Frequency and Time Specifications

1. Horizontal resolution is span/(sweep points - 1).

Sweep time and triggering

Range	Span $=0 \mathrm{~Hz}$	$1 \mu \mathrm{~s}$ to 6000 s
	Span $\geq 10 \mathrm{~Hz}$	1 ms to 4000 s
Accuracy	Span $\geq 10 \mathrm{~Hz}$, swept	$\pm 0.01 \%$ nominal
	Span $\geq 10 \mathrm{~Hz}$, FFT	$\pm 40 \%$ nominal
	Span $=0 \mathrm{~Hz}$	$\pm 0.01 \%$ nominal
Trigger	Free run, line, video, external 1, external 2, RF burst, periodic timer	
Trigger Delay	Span $=0 \mathrm{~Hz}$ or FFT	-150 to +500 ms
	Span $\geq 10 \mathrm{~Hz}$, swept	0 to 500 ms
	Resolution	$0.1 \mu \mathrm{~s}$
Time gating		
Gate methods	Gated LO; gated video; gated FFT	
Gate length range (except method = FFT)	100.0 ns to 5.0 s	
Gate delay range	0 to 100.0 s	
Gate delay jitter	33.3 ns p-p nominal	
Sweep (trace) point range		
All spans	1 to 40001	
Resolution bandwidth (RBW)		
Range (-3.01 dB bandwidth)	1 Hz to 3 MHz (10\% steps), 4, 5, 6, 8 MHz	
Bandwidth accuracy (power)	1 Hz to 750 kHz	$\pm 1.0 \%(\pm 0.044 \mathrm{~dB})$
	820 kHz to 1.2 MHz (<3.6 GHz CF)	$\pm 2.0 \%$ ($\pm 0.088 \mathrm{~dB})$
	1.3 to 2 MHz (<3.6 GHz CF)	$\pm 0.07 \mathrm{~dB}$ nominal
	2.2 to 3 MHz (<3.6 GHz CF)	$\pm 0.15 \mathrm{~dB}$ nominal
	4 to 8 MHz (<3.6 GHz CF)	$\pm 0.25 \mathrm{~dB}$ nominal
Bandwidth accuracy (-3.01 dB) RBW range	1 Hz to 1.3 MHz	$\pm 2 \%$ nominal
Selectivity ($-60 \mathrm{~dB} /-3 \mathrm{~dB}$)	4.1:1 nominal	
EMI bandwidth (CISPR compliant)	$200 \mathrm{~Hz}, 9 \mathrm{kHz}, 120 \mathrm{kHz}, 1 \mathrm{MHz}$	(Option EMC or N6141A ${ }^{1}$ required)
EMI bandwidth (MIL STD 461E compliant)	$10 \mathrm{~Hz}, 100 \mathrm{~Hz}, 1 \mathrm{kHz}, 10 \mathrm{kHz}$, $100 \mathrm{kHz}, 1 \mathrm{MHz}$	(Option EMC or N6141A ${ }^{1}$ required)
Analysis bandwidth ${ }^{1}$		
Maximum bandwidth	Option B40	40 MHz
	Option B25 (standard)	25 MHz
	Standard	10 MHz
Video bandwidth (VBW)		
Range	1 Hz to 3 MHz (10\% steps), 4, 5, 6, 8 MHz, and wide open (labeled 50 MHz)	
Accuracy	± 6 \% nominal	
Measurement speed ${ }^{3}$	Standard nominal	Option PC4 nominal
Local measurement and display update rate	11 ms (90/s)	4 ms (250/s)
Remote measurement and LAN transfer rate	6 ms (167/s)	$5 \mathrm{~ms}(200 / \mathrm{s})$
Marker peak search	5 ms	1.5 ms
Center frequency tune and transfer (RF)	22 ms	20 ms
Center frequency tune and transfer ($\mu \mathrm{W}$)	49 ms	47 ms
Measurement/mode switching	75 ms	39 ms

[^0]
Amplitude Accuracy and Range Specifications

Amplitude range	
Measurement range	Displayed average noise level (DANL) to +23 dBm
Input attenuator range (10 Hz to 26.5 GHz)	
Standard Option FSA	0 to 60 dB in 10 dB steps
	0 to 60 dB in 2 dB steps
Electronic attenuator (Option EA3)	
Frequency range	10 Hz to 3.6 GHz
Attenuation range Electronic attenuator range	
Full attenuation range (mechanical + electronic)	0 to $84 \mathrm{~dB}, 1 \mathrm{~dB}$ steps
Maximum safe input level	
Average total power (with and without preamp)	$+30 \mathrm{dBm}(1 \mathrm{~W})$
Peak pulse power	$<10 \mu \mathrm{~s}$ pulse width, $<1 \%$ duty cycle $+50 \mathrm{dBm}(100 \mathrm{~W})$ and input attenuation $\geq 30 \mathrm{~dB}$
DC volts	
DC coupled AC coupled	$\pm 0.2 \mathrm{Vdc}$
	$\pm 100 \mathrm{Vdc}$
Display range	
Log scale	0.1 to $1 \mathrm{~dB} /$ division in 0.1 dB steps
	1 to 20 dB /division in 1 dB steps (10 display divisions)
Linear scale	10 divisions
Scale units	dBm, dBmV, dB $\mu \mathrm{V}, \mathrm{dBmA}, \mathrm{dB} \mu \mathrm{A}, \mathrm{V}, \mathrm{W}, \mathrm{A}$

Frequency response		Specification	95th percentile ($\sim 2 \sigma$)
(10 dB input attenuation, 20 to $30^{\circ} \mathrm{C}$, preselector centering applied, $\boldsymbol{\sigma}=$ nominal standard deviation)			
RF/MW (Option 503, 507, 513, 526)	9 kHz to 10 MHz	$\pm 0.8 \mathrm{~dB}$	$\pm 0.4 \mathrm{~dB}$
	$10 \mathrm{MHz}{ }^{1}$ to 3.6 GHz	$\pm 0.6 \mathrm{~dB}$	$\pm 0.21 \mathrm{~dB}$
	3.5 to 7.0 GHz	$\pm 2.0 \mathrm{~dB}$	$\pm 0.69 \mathrm{~dB}$
	6.9 to 13.6 GHz	$\pm 2.5 \mathrm{~dB}$	
	13.5 to 22.0 GHz	$\pm 3.0 \mathrm{~dB}$	
	22.0 to 26.5 GHz	$\pm 3.2 \mathrm{~dB}$	
Millimeter-wave (Option 532, 544)	9 kHz to 10 MHz	$\pm 0.6 \mathrm{~dB}$	$\pm 0.28 \mathrm{~dB}$
	10 to 50 MHz	$\pm 0.45 \mathrm{~dB}$	$\pm 0.21 \mathrm{~dB}$
	50 MHz to 3.6 GHz	$\pm 0.45 \mathrm{~dB}$	$\pm 0.20 \mathrm{~dB}$
	3.5 to 5.2 GHz	$\pm 1.7 \mathrm{~dB}$	$\pm 0.91 \mathrm{~dB}$
	5.2 to 8.4 GHz	$\pm 1.5 \mathrm{~dB}$	$\pm 0.61 \mathrm{~dB}$
	8.3 to 13.6 GHz	$\pm 2.0 \mathrm{~dB}$	$\pm 0.61 \mathrm{~dB}$
	13.5 to 17.1 GHz	$\pm 2.0 \mathrm{~dB}$	$\pm 0.67 \mathrm{~dB}$
	17.0 to 22.0 GHz	$\pm 2.0 \mathrm{~dB}$	$\pm 0.78 \mathrm{~dB}$
	22.0 to 26.5 GHz	$\pm 2.5 \mathrm{~dB}$	$\pm 0.72 \mathrm{~dB}$
	26.4 to 34.5 GHz	$\pm 2.5 \mathrm{~dB}$	$\pm 1.11 \mathrm{~dB}$
	34.4 to 44 GHz	$\pm 3.2 \mathrm{~dB}$	$\pm 1.42 \mathrm{~dB}$
Preamp on (P03, P07)			
RF/MW (Option 503, 507, 513, 526)	100 kHz to 3.6 GHz		$\pm 0.28 \mathrm{~dB}$ nominal
	3.6 to 7.0 GHz		$\pm 0.67 \mathrm{~dB}$ nominal
Preamp on (P03, P07, P32, P44)			
Millimeter-wave (Option 532,544)	100 kHz to 3.6 GHz		$\pm 0.28 \mathrm{~dB}$ nominal
	3.5 to 8.4 GHz		$\pm 0.67 \mathrm{~dB}$ nominal
	8.4 to 26.5 GHz		$\pm 0.50 \mathrm{~dB}$ nominal
	26.4 to 44 GHz		$\pm 0.80 \mathrm{~dB}$ nominal

1. DC coupling required to meet specifications below 50 MHz . With AC coupling, specifications apply at frequencies of 50 MHz and higher. Statistical observations at 10 MHz with AC coupling show that most instruments meet the DC-coupled specifications, however, a small percentage of instruments are expected to have errors exceeding 0.5 dB at 10 MHz at the temperature extreme. The effect at 20 to 50 MHz is negligible but not warranted.

Input attenuation switching uncertainty		Specifications	Additional information
Attenuation > 2 dB , preamp off	50 MHz (reference frequency)	$\pm 0.20 \mathrm{~dB}$	$\pm 0.08 \mathrm{~dB}$ typical
Relative to 10 dB (reference setting)	9 kHz to 3.6 GHz		$\pm 0.3 \mathrm{~dB}$ nominal
	3.5 to 7.0 GHz		$\pm 0.5 \mathrm{~dB}$ nominal
	6.9 to 13.6 GHz		$\pm 0.7 \mathrm{~dB}$ nominal
	13.5 to 26.5 GHz		$\pm 0.7 \mathrm{~dB}$ nominal
	$>26.5 \mathrm{GHz}$		$\pm 1.0 \mathrm{~dB}$ nominal
Total absolute amplitude accuracy			
(10 dB attenuation, 20 to $30{ }^{\circ} \mathrm{C}, 1 \mathrm{~Hz} \leq \mathrm{RBW} \leq 1 \mathrm{MHz}$, input signal -10 to -50 dBm , all settings auto-coupled except Auto Sw Time $=$ Accy, any reference level, any scale, $\sigma=$ nominal standard deviation)			
	At 50 MHz At all frequencies 9 kHz to 3.6 GHz	$\begin{aligned} & \pm 0.40 \mathrm{~dB} \\ & \pm(0.40 \mathrm{~dB}+\text { frequ } \\ & \pm 0.27 \mathrm{~dB}(95 \text { th } \mathrm{p} \end{aligned}$	response) ile $\approx 2 \sigma$)
Preamp on	100 kHz to 3.6 GHz	$\pm(0.39 \mathrm{~dB}+\mathrm{freq}$	esponse)
Input voltage standing wave ratio (VSWR) ($\geq 10 \mathrm{~dB}$ input attenuation)			
	$\begin{aligned} & \text { Options 503, } \\ & 507,513,526 \end{aligned}$	Options 532, 544	
10 MHz to 3.6 GHz	< 1.2:1 nominal	1.2:1 nominal	
3.6 to 26.5 GHz	< 1.8:1 nominal	1.5:1 nominal	
26.5 to 44 GHz	N/A	< 1.8:1 nominal	
Resolution bandwidth switching uncertainty (referenced to 30 kHz RBW)			
1 Hz to 3 MHz RBW	$\pm 0.10 \mathrm{~dB}$		
4, 5, 6, 8 MHz RBW	$\pm 1.0 \mathrm{~dB}$		
Reference level			
Range Log scale Linear scale	-170 to +23 dBm in 0.01 dB steps		
	Same as Log (707 pV to 3.16 V)		
Accuracy	0 dB		
Display scale switching uncertainty			
Switching between linear and log	0 dB		
Log scale/div switching	0 dB		
Display scale fidelity			
Between -10 dBm and -80 dBm input mixer level	$\pm 0.15 \mathrm{~dB}$ total		
Trace detectors			
Normal, peak, sample, negative peak, log power average, RMS average, and voltage average			
Preamplifier (Option P03, P07, P32, P44)			
Frequency range	Option P03	100 kHz to 3.6 GH	
	Option P07	100 kHz to 7 GHz	
	Option P32	100 kHz to 32 GHz	
	Option P44	100 kHz to 44 GH	
Gain	100 kHz to 3.6 GHz	+20 dB nominal	
	3.6 to 7.0 GHz	+35 dB nominal	
	$>7 \mathrm{GHz}$	+40 dB nominal	
Noise figure	100 kHz to 3.6 GHz	8 to 12 dB nomina	portional to frequency)
	3.6 to 8.4 GHz	9 dB nominal	
	8.4 to 13.6 GHz	10 dB nominal	
	$>13.6 \mathrm{GHz}$	DANL + 176.24 dB	

Dynamic Range Specifications

1 dB gain compression (two-tone)
Total power at mixer input

RF/MW
(Option 503, 507, 513, 526)

Preamp on RF/MW
(Option 503, 507, 513, 526)

Millimeter-wave
(Option 532, 544)

Preamp on millimeter-wave (Option 532, 544)

20 MHz to 26.5 GHz

+9 dBm nominal

Total power at preamp input

10 MHz to 3.6 GHz	-10 dBm nominal
3.6 to 7.0 GHz	-26 dBm nominal
	Total power at mixer input

20 MHz to 26.5 GHz	+6 dBm nominal
26.5 to 44 GHz	0 dBm nominal
	Total power at preamp input

10 MHz to 3.6 GHz	-14 dBm nominal
3.6 to 26.5 GHz	
Tone spacing: 100 kHz to 20 MHz	-28 dBm nominal
Tone spacing: $>70 \mathrm{MHz}$	-20 dBm nominal
$>26.5 \mathrm{GHz}$	-30 dBm nominal

Displayed average noise level (DANL)

(Input terminated, sample or average detector, averaging type $=\mathbf{L o g}, \mathbf{0 d B}$ input attenuation, IF Gain $=\mathrm{High}, \mathbf{2 0} \mathbf{t o} \mathbf{3 0}^{\circ} \mathrm{C}$)

[^1]Displayed average noise level (DANL) (continued)

Preamp on, millimeter-wave	100 kHz to 1 MHz	-145 dBm	-148 dBm
(Option 532, 544)	1 MHz to 1.2 GHz	-164 dBm	-165 dBm
	1.2 to 2.1 GHz	-163 dBm	-164 dBm
	2.1 to 3.6 GHz	-162 dBm	-163 dBm
	3.5 to 7 GHz	-160 dBm	-162 dBm
	7 to 20 GHz	-160 dBm	-162 dBm
	20 to 26.5 GHz	-158 dBm	-160 dBm
	26.5 to 32 GHz	-156 dBm	-159 dBm
	32 to 34 GHz	-156 dBm	-159 dBm
	40 to 44 GHz	-153 dBm	-155 dBm

1. N is the $L O$ multiplication factor.

Second harmonic distortion (SHI)

	Source frequency	SHI (nomin	
RF/MW (Option 503, 507, 513, 526)	10 MHz to 1.8 GHz	+45 dBm	
	1.75 to 7.0 GHz	+65 dBm	
	7.0 to 11.0 GHz	+55 dBm	
	11.0 to 13.25 GHz	+50 dBm	
Millimeter-wave (Option 532, 544)	10 MHz to 1.8 GHz	$+45 \mathrm{dBm}$	
	1.8 to 6.5 GHz	$+65 \mathrm{dBm}$	
	6.5 to 10 GHz	+60 dBm	
	10 to 13.25 GHz	$+55 \mathrm{dBm}$	
	13.25 to 22 GHz	+50 dBm	
Third-order intermodulation distortion (TOI)			
(Two - $\mathbf{3 0} \mathbf{d B m}$ tones at input mixer with tone separation > $\mathbf{5}$ times IF prefilter bandwidth, $\mathbf{2 0}$ to $\mathbf{3 0}{ }^{\circ} \mathbf{C}$, see Specifications Guid for IF prefilter bandwidths)			
		TOI	TOI (typical)
RF/MW (Option 503, 507, 513, 526)	100 to 400 MHz	$+10 \mathrm{dBm}$	+14 dBm
	400 MHz to 1.7 GHz	$+11 \mathrm{dBm}$	+15 dBm
	1.7 to 3.6 GHz	+13 dBm	+17 dBm
	3.6 to 5.1 GHz	+11 dBm	+17 dBm
	5.1 to 7.0 GHz	+13 dBm	+17 dBm
	7.0 to 13.6 GHz	+11 dBm	+15 dBm
	13.6 to 26.5 GHz	$+9 \mathrm{dBm}$	+14 dBm
Preamp on, RF/MW (Option 503, 507, 513, 526)	30 MHz to 3.6 GHz (two -45 dBm tones at preamp) 3.6 to 7 GHz (two -50 dBm tones at preamp)		0 dBm nominal -18 dBm nominal
Millimeter-wave (Option 532, 544)	10 to 100 MHz	+12 dBm	+17 dBm
	100 MHz to 3.95 GHz	+15 dBm	+19 dBm
	3.95 to 8.4 GHz	+15 dBm	+18 dBm
	8.3 to 13.6 GHz	+15 dBm	+18 dBm
	13.5 to 17.1 GHz	+11 dBm	+17 dBm
	17.0 to 26.5 GHz	+10 dBm	+17 dBm (nominal)
	26.5 to 44 GHz	-	+13 dBm (nominal)
Preamp on, millimeter-wave (Option 532, 544)	30 MHz to 3.6 GHz (two 3.6 to 26.5 GHz (two	reamp level) mp level)	0 dBm (nominal) -18 dBm (nominal)

1. N is the LO multiplication factor.

Nominal dynamic range for Options 503, 507, 513 and 526

Nominal Dynamic Range Bands 1-4

Figure 1. Nominal dynamic range - Band 0 , for second and third order distortion, 9 kHz to 3.6 GHz

Figure 2. Nominal dynamic range - Bands 1 to 4, for second and third order distortion, 3.6 GHz to 26.5 GHz

Phase noise ${ }^{1}$	Offset	Specification	Typical
RF/MWW			
(Option $503,507,513,526)$ Noise sidebands $\left(20\right.$ to $\left.30^{\circ} \mathrm{C}, \mathrm{CF}=1 \mathrm{GHz}\right)$	100 Hz	$-84 \mathrm{dBc} / \mathrm{Hz}$	$-88 \mathrm{dBc} / \mathrm{Hz}$
	1 kHz	-	$-98 \mathrm{dBc} / \mathrm{Hz}$ nominal
	10 kHz	$-99 \mathrm{dBc} / \mathrm{Hz}$	$-102 \mathrm{dBc} / \mathrm{Hz}$
	100 kHz	$-112 \mathrm{dBc} / \mathrm{Hz}$	$-114 \mathrm{dBc} / \mathrm{Hz}$
	1 MHz	$-132 \mathrm{dBc} / \mathrm{Hz}$	$-135 \mathrm{dBc} / \mathrm{Hz}$
	10 MHz	-	$-143 \mathrm{dBc} / \mathrm{Hz}$ nominal

1. For nominal phase noise values with the RF/MW EXA (Option 503, 507, 513, or 526), refer to Figure 3.

Figure 3. Nominal phase noise at different center frequencies for RF/MW EXA (Option 503, 507, 513, or 526)

Phase noise ${ }^{1}$	Offset	Specification	Typical
Millimeter-wave (Option 532, 544) Noise sidebands $\text { (20 to } 30^{\circ} \mathrm{C}, \mathrm{CF}=1 \mathrm{GHz} \text {) }$	100 Hz	-84 dBc/Hz	$-88 \mathrm{dBc} / \mathrm{Hz}$
	1 kHz	-	$-101 \mathrm{dBc} / \mathrm{Hz}$ nominal
	10 kHz	$-103 \mathrm{dBc} / \mathrm{Hz}$	$-106 \mathrm{dBc} / \mathrm{Hz}$
	100 kHz	$-115 \mathrm{dBc} / \mathrm{Hz}$	$-116 \mathrm{dBc} / \mathrm{Hz}$
	1 MHz	$-135 \mathrm{dBc} / \mathrm{Hz}$	$-137 \mathrm{dBc} / \mathrm{Hz}$
	10 MHz	-	$-149 \mathrm{dBc} / \mathrm{Hz}$ nominal

1. For nominal phase noise values with the millimeter-wave EXA (Option 532 or 544), refer to Figure 4.

Figure 4. Nominal phase noise at different center frequencies for millimeter-wave EXA (Option 532 or 544)

Option MPB, microwave preselector bypass

Frequency range

N9010A-507	3.6 to 7 GHz
N9010A-513	3.6 to 13.6 GHz
N9010A-526	3.6 to 26.5 GHz
N9010A-532	3.6 to 32 GHz
N9010A-544	3.6 to 44 GHz

1. When Option MPB is installed and enabled, some aspects of the analyzer performance changes. Please refer to the EXA specification guide for more details.

PowerSuite Measurement Specifications

Channel power	
Amplitude accuracy, W-CDMA or IS95 (20 to $30^{\circ} \mathrm{C}$, attenuation $=10 \mathrm{~dB}$)	$\pm 0.94 \mathrm{~dB}(\pm 0.30 \mathrm{~dB} 95$ th percentile)
Occupied bandwidth	
Frequency accuracy	\pm [span/1000] nominal
Adjacent channel power	
	Adjacent Alternate
Accuracy, W-CDMA (ACLR) (at specific mixer levels and ACLR ranges) MS	$\pm 0.22 \mathrm{~dB} \quad \pm 0.34 \mathrm{~dB}$
BTS	$\pm 1.07 \mathrm{~dB} \quad \pm 1.00 \mathrm{~dB}$
Dynamic range (typical)	
Without noise correction With noise correction	$-68 \mathrm{~dB} \quad-74 \mathrm{~dB}$
	$-73 \mathrm{~dB}$
Offset channel pairs measured	1 to 6
ACP measurement and transfer time (fast method)	14 ms nominal ($\sigma=0.2 \mathrm{~dB}$)
Multiple number of carriers measured	Up to 12
Power statistics CCDF	
Histogram resolution	0.01 dB
Harmonic distortion	
Maximum harmonic number	10th
Result	Fundamental power (dBm), relative harmonics power (dBc), total harmonic distortion in \%
Intermod (TOI)	Measure the third-order products and intercepts from two tones
Burst power	
Methods	Power above threshold, power within burst width
Results	Single burst output power, average output power, maximum power, minimum power within burst, burst width
Spurious emission	
W-CDMA (1 to $\mathbf{3 . 6} \mathbf{G H z}$) table-driven spurious signals; search across regions	
Dynamic range	93.1 dB
Absolute sensitivity	-79.4 dBm -85.4 dBm typical
Spectrum emission mask (SEM)	
cdma2000 ${ }^{\text {® }}$ (750 kHz offset)	
Relative dynamic range (30 kHz RBW)	
Absolute sensitivity	-94.7 dBm -100.7 dBm typical
Relative accuracy	$\pm 0.11 \mathrm{~dB}$
3GPP W-CDMA (2.515 MHz offset)	
Relative dynamic range (30 kHz RBW)	76.5 dB
Absolute sensitivity	-94.7 dBm -100.7 dBm typical
Relative accuracy	$\pm 0.12 \mathrm{~dB}$

General Specifications

Temperature range

Operating	0 to $55^{\circ} \mathrm{C}$
Storage	-40 to $70^{\circ} \mathrm{C}$

EMC
Complies with European EMC Directive 2004/108/EC

- IEC/EN 61326-1 or IEC/EN 61326-2-1
- CISPR Pub 11 Group 1, class A
- AS/NZS CISPR 11:2002
- ICES/NMB-001

This ISM device complies with Canadian ICES-001
Cet appareil ISM est conforme à la norme NMB-001 du Canada

Safety

Complies with European Low Voltage Directive 73/23/EEC, amended by 93/68/EEC

- IEC/EN 61010-1 2nd Edition
- Canada: CSA C22.2 No. 61010-1
- USA: UL 61010-1 2nd Edition

Audio noise	
Acoustic noise emission	Geraeuschemission
LpA $<70 \mathrm{~dB}$	LpA $<70 \mathrm{~dB}$
Operator position	Am Arbeitsplatz
Normal position	Normaler Betrieb
Per ISO 7779	Nach DIN 45635 t. 19
Environmental stress	

Samples of this product have been type tested in accordance with the Agilent Environmental Test Manual and verified to be robust against the environmental stresses of storage, transportation, and end-use; those stresses include, but are not limited to, temperature, humidity, shock, vibration, altitude, and power line conditions; test methods are aligned with IEC 60068-2 and levels are similar to MILPRF-28800F Class 3.

Power requirements	
Voltage and frequency	100 to $120 \mathrm{~V}, 50 / 60 / 400 \mathrm{~Hz}$
	220 to $240 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$
Power consumption	
On Standby	350 W maximum
	20 W
Display	
Resolution	1024×768, XGA
Size	213 mm (8.4 in.) diagonal (nominal)
Data storage	
Internal	$\geq 80 \mathrm{~GB}$ nominal (removable solid-state drive)
External	Supports USB 2.0 compatible memory devices
Weight (without options)	
Net	$16 \mathrm{~kg}(35 \mathrm{lbs})$ nominal
Shipping	28 kg (62 lbs) nominal
Dimensions	
Height	177 mm (7.0 in)
Width	426 mm (16.8 in)
Length	368 mm (14.5 in)
Warranty	
The EXA signal analyzer is supplied with a one-year warranty	
Calibration cycle	
The recommended calibration cycle is two years; calibration services are available through Agilent service centers	

Inputs and Outputs

Front panel	
$\begin{aligned} & \text { RF input connector } \\ & \text { Standard (Option 503, 507, 513, or 526) } \\ & \text { Standard (Option } 532 \text { or 544) } \end{aligned}$	
	Type-N female, 50Ω nominal
	2.4 mm male, 50Ω nominal
Probe power	
Voltage/current	$+15 \mathrm{Vdc}, \pm 7 \%$ at 150 mA max nominal
	$-12.6 \mathrm{Vdc}, \pm 10 \%$ at 150 mA max nominal
USB 2.0 ports Master (2 ports)	
Standard	Compatible with USB 2.0
Connector Output current	USB Type-A female
	0.5 A nominal
External mixing, Option EXM (available only with EXA millimeter wave, Option 532 or 544	
Connection port	
Connector Impedance	SMA, female
	50Ω nominal
Impedance Functions	Triplexed for mixer bias, IF input and LO output
Mixer bias range	$\pm 10 \mathrm{~mA} \mathrm{in} 10 \mu \mathrm{~A}$ step
IF input center frequency	
Narrowband IF path 40 MHz IF path	322.5 MHz
	250 MHz
LO output frequency range	3.75 to 14.0 GHz
Rear panel	
10 MHz out	
Connector	BNC female, 50Ω nominal
Output amplitudeFrequency	$\geq 0 \mathrm{dBm}$ nominal
	$10 \mathrm{MHz} \pm$ ($10 \mathrm{MHz} \times$ frequency reference accuracy)
Ext Ref In	
Connector Input amplitude range	BNC female, 50Ω nominal
	-5 to 10 dBm nominal
Input frequency	10 MHz nominal
Frequency lock range	$\pm 5 \times 10^{-6}$ of specified external reference input frequency
Trigger 1 and 2 inputs	
Connector Impedance	$>10 \mathrm{k} \Omega$ nominal
Trigger level range	-5 to 5 V
Trigger 1 and 2 outputs	
Connector Impedance	BNC female
	50Ω nominal
Level	5 V TTL nominal
Monitor output	
Connector	VGA compatible, 15 -pin mini D-SUB
Format	XGA (60 Hz vertical sync rates, non-interlaced) analog RGB
Resolution	1024×768

Rear panel	
Noise source drive +28 V (pulsed) Connector	BNC female
SNS Series noise source connector	For use with Agilent SNS Series noise sources
Analog out	
USB 2.0 ports Master (4 ports)	
Standard	Compatible with USB 2.0
Connector Output current	USB Type-A female
	0.5 A nominal
Slave (1 port)	
Standard	Compatible with USB 2.0
Connector	USB Type-B female
Output current	0.5 A nominal
GPIB interface	
Connector	IEEE-488 bus connector
GPIB codes	SH1, AH1, T6, SR1, RL1, PP0, DC1, C1, C2, C3, C28, DT1, L4, C0
GPIB mode	Controller or device
LAN TCP/IP interface	
Standard Connector	1000Base-T
	RJ45 Ethertwist
IF output	
Connector Impedance	SMA female, shared by Option CR3 and CRP
	50Ω nominal
Wideband IF output, Option CR3	
Center frequency SA mode or I / Q analyzer with IF $\mathrm{BW} \leq 25 \mathrm{MHz}$ with Option B40	
	322.5 MHz
	250 MHz
Conversion gain	-1 to +4 dB (nominal) plus RF frequency response
Bandwidth	
Low band	Up to 140 MHz (nominal)
High band, with preselector High band, with preselector bypassed	Depends on center frequency
	Up to 410 MHz (nominal)
Programmable IF output, Option CRP	
Center frequency	
Range	10 to 75 MHz (user selectable)
Resolution	0.5 MHz
Conversion gain	-1 to +4 dB (nominal) plus RF frequency response
Bandwidth	
Output at 70 MHz center	
Low band or high band with preselector bypassed ${ }^{1}$	100 MHz (nominal)
Preselected band	Depends on RF center frequency
Lower output frequencies	Subject to folding
Residual output signals	$\leq-88 \mathrm{dBm}$ (nominal)

[^2]
I/0 Analyzer

Frequency				
Frequency span				
Standard	10 Hz to 10 MHz			
Option B25 (standard)	10 Hz to 25 MHz			
Option B40	10 Hz to 40 MHz			
Resolution bandwidth (spectrum measurement)				
Range				
Overall	100 mHz to 3 MHz			
Span $=1 \mathrm{MHz}$	50 Hz to 1 MHz			
Span $=10 \mathrm{kHz}$	1 Hz to 10 kHz			
Span $=100 \mathrm{~Hz}$	100 mHz to 100 Hz			
Window shapes				
Flat top, Uniform, Hanning, Gaussian, Blackman, Blackman-Harris, Kaiser Bessel (K-B 70 dB, K-B 90 dB and K-B 110 dB)				
Analysis bandwidth				
Standard	10 Hz to 10 MHz			
Option B25 (standard)	10 Hz to 25 MHz			
Option B40	10 Hz to 40 MHz			
IF frequency response (standard $10 \mathrm{MHz} \mathrm{IF} \mathrm{path)}$				
IF frequency response (demodulation and FFT response relative to the center frequency, 20 to $\mathbf{3 0}^{\circ} \mathrm{C}$)				
Center frequency (GHz)	Span (MHz)	Preselector	Max. error	RMS
< 3.6	≤ 10	n/a	$\pm 0.40 \mathrm{~dB}$	0.04 dB nominal
≥ 3.6	≤ 10	on		0.25 dB nominal
≥ 3.6	≤ 10	off ${ }^{2}$	$\pm 0.45 \mathrm{~dB}$	0.04 dB nominal
> 26.5 (Option 532 or 544)	≤ 10	on		0.35 dB nominal
IF phase linearity (deviation from mean phase linearity, nominal)				
Center frequency (GHz)	Span (MHz)	Preselector	Peak-to-peak	RMS
< 3.6	≤ 10	n/a	$0.4{ }^{\circ}$	0.1°
≥ 3.6	≤ 10	off	$0.4{ }^{\circ}$	0.1°
≥ 3.6 (Option ≤ 526)	≤ 10	on	1.0°	0.2°
Data acquisition (10 MHz IF path)				
Time record length IO analyzer	4,000,000 IO sample pairs			
Sample rate at ADC				
Option DP2, B40 or MPB	100 MSa /s			
None of the above	$90 \mathrm{MSa} / \mathrm{s}$			
ADC resolution				
Option DP2, B40 or MPB	16 bits			
None of the above	14 bits			

[^3]Option B25 (standard) 25 MHz analysis bandwidth

IF frequency response (demodulation and FFT response relative to the center frequency, $\mathbf{2 0}$ to $\mathbf{3 0}{ }^{\circ} \mathrm{C}$)				
Center frequency (GHz)	Span (MHz)	Preselector	Max. error	RMS
≤ 3.6	10 to ≤ 25	n/a	$\pm 0.45 \mathrm{~dB}$	0.051 dB nominal
> 3.6	10 to ≤ 25	on		0.45 dB nominal
> 3.6	10 to ≤ 25	off ${ }^{1}$	$\pm 0.45 \mathrm{~dB}$	0.071 dB nominal

IF phase linearity (deviation from mean phase linearity, nominal)				
Center frequency (GHz)	Span (MHz)	Preselector	Peak-to-peak	RMS
$0.02 \leq \mathrm{f}<3.6$	≤ 25	n / a	0.6°	0.14°
≥ 3.6	≤ 25	off ${ }^{1}$	1.9°	0.4°
$\geq 3.6($ Option $\leq 526)$	≤ 25	on	4.5°	1.2°

Data acquisition (25 MHz IF path)

Time record length (IO pairs) IO Analyzer

89600 software or N9064A	32-bit packing	64-bit packing	Memory
Option DP2, B40 or MPB	536 MSa	268 MSa	2 GB
None of the above	4,000,000 10 sample pairs (independent of data packing)		
Sample rate at ADC Option DP2, B40 or MPB		$100 \mathrm{MSa} / \mathrm{s}$	
None of the above	$90 \mathrm{MSa} / \mathrm{s}$		
ADC resolution			
None of the above	14 bits		

Option B40 40 MHz analysis bandwidth

Center frequency (GHz)	Span (MHz)	Preselector	Max. error	RMS
$0.03 \leq \mathrm{f}<3.6$	≤ 40	n/a	$\pm 0.3 \mathrm{~dB}$	0.08 dB
$3.6 \leq \mathrm{f} \leq 26.5$	≤ 40	off ${ }^{1}$	$\pm 0.25 \mathrm{~dB}$	0.08 dB
>26.5	≤ 40	off ${ }^{1}$	$\pm 0.25 \mathrm{~dB}$	0.12 dB
IF phase linearity (deviation from mean phase linearity, nominal)				
Center frequency (GHz)	Span (MHz)	Preselector	Peak-to-peak	RMS
$0.02 \leq \mathrm{f}<3.6$	40	n/a	0.2°	0.05°
≥ 3.6	40	off ${ }^{1}$	5°	$1.4{ }^{\circ}$

Data acquisition (40 MHz IF path)

Time record length (IO pairs) IO analyzer	4,000,000 samples (1/0 pairs)		2 GB total memory (nominal)
89600 VSA software or N9064A VXA	32-bit packing	64-bit packing	
Length (IO sample pairs)	536 MSa	268 MSa	
Length (time units)			Samples/(span $\times 1.28)$ (nominal)
Sample rate			
At ADC	$200 \mathrm{Msa} / \mathrm{s}$		
IO pairs			Span x 1.28 (nominal)
ADC resolution	12 bits		

[^4]
www.agilent.com www.agilent.com/find/exa

Related Literature

Brochure 5989-6527EN
Configuration Guide 5989-6531EN

For more information or literature resources please visit the web: www.agilent.com/find/exa

Web
Product page:
www.agilent.com/find/N9010A
X-Series measurement applications: www.agilent.com/find/X-Series_Apps

X-Series signal analyzers:
www.agilent.com/find/X-Series
cdma 2000^{\circledR} is a registered certification mark of the Telecommunications Industry Association.

www.agilent.com/find/myagilent
A personalized view into the information most relevant to you.

LKI

www.lxistandard.org

LXI is the LAN-based successor to GPIB, providing faster, more efficient connectivity. Agilent is a founding member of the LXI consortium.

Agilent Channel Partners

 uww.agilent.com/find/channelpartnersGet the best of both worlds: Agilent's measurement expertise and product breadth, combined with channel partner convenience.

For more information on Agilent
Technologies' products, applications or services, please contact your local Agilent office. The complete list is available at:
www.agilent.com/find/contactus
Americas

Canada	$(877) 8944414$
Brazil	$(11) 41973600$
Mexico	018005064800
United States	$(800) 8294444$

Asia Pacific

Australia	1800629485
China	8008100189
Hong Kong	800938693
India	1800112929
Japan	$0120(421) 345$
Korea	0807690800
Malaysia	1800888848
Singapore	18003758100
Taiwan	0800047866
Other AP Countries	$(65) 3758100$

Europe \& Middle East

Belgium	$32(0) 24049340$
Denmark	4545801215
Finland	$358(0) 108552100$
France	0825010700^{*}
	${ }^{*} 0.125 € /$ minute
Germany	$49(0) 70314646333$
Ireland	1890924204
Israel	$972-3-9288-504 / 544$
Italy	390292608484
Netherlands	$31(0) 205472111$
Spain	$34(91) 6313300$
Sweden	$0200-882255$
United Kingdom	$44(0) 1189276201$

For other unlisted countries:
www.agilent.com/find/contactus
Revised: January 6, 2012
Product specifications and descriptions in this document subject to change without notice.
© Agilent Technologies, Inc. 2013
Published in USA, February 27, 2013 5989-6529EN

[^0]: 1. Analysis bandwidth is the instantaneous bandwidth available around a center frequency over which the input signal can be digitized for further analysis or processing in the time, frequency, or modulation domain.
 2. Sweep points $=101$.
[^1]: 1. Nis the LO multiplication factor.
[^2]: 1. Option MPB installed and enabled.
[^3]: 1. Option MPB is installed and enabled.
[^4]: 1. Option MPB is installed and enabled.
