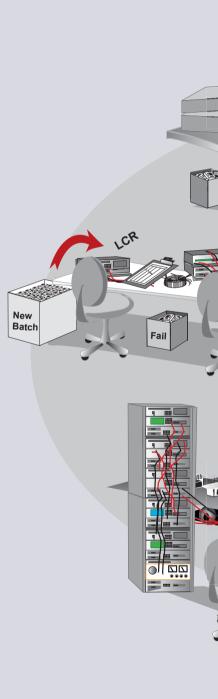
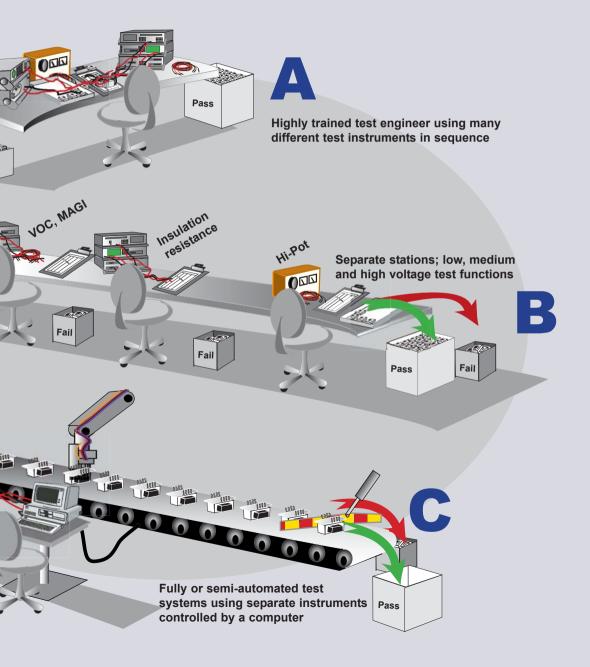

Voltech


AT3600: THE SOLUTION TO WOUND COMPONENT TESTING

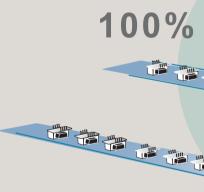
TRADITIONAL TESTING METHODS


Transformers are an essential component in almost all electrical and electronic products made today. The manufacture of transformers and other wound components is a complex process with many opportunities to introduce functional or safety-related faults. Testing has therefore always been an essential part of the production process to ensure the performance, safety and reliability of wound components.

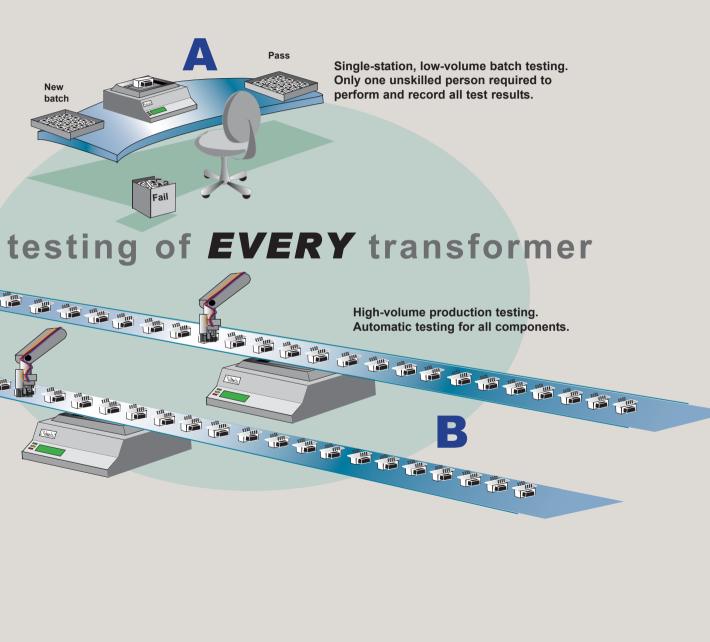
Traditional

methods of testing transformers

For many years, test instrumentation available to the transformer market has limited manufacturers to one of these testing methods. Unfortunately, these methods may have a number of problems:


- The need for highly trained test staff.
- Possibility of errors occurring between test stations that make zero-error testing impossible.
- Many instruments are required to provide complete functional and safety testing.
- A large amount of component handling during test.
- Speed of testing is limited. So, sample testing or reduced function testing may be required to match production output.
- Changing from one transformer type to another can be time consuming.
- Maintenance/calibration of many separate instruments.

With an ever increasing complexity of transformer design, manufacturers around the world are facing pressure to provide lower cost components that are fully tested to ensure zero defects. Using techniques patented* by Voltech, the AT3600 introduces a fast, reliable and flexible test solution for all small to medium size wound components. Offering 100% testing of production output for 100% of the required functional and safety tests, the AT3600 provides complete assurance of zero-defect components. Whether used for testing manually or with automatic handling systems, the AT3600 will guarantee output quality, minimize test times and reduce costs.



* International patents: UK 2261957B, Europe 0621953B, USA US5500598

Accurate

and cost effective...

Available tests:

CTY	Continuity
R	DC Resistance
R2	DC Resistance Match
LS	Inductance Series
LP	Inductance Parallel
Q	Quality Factor
D	Dissipation Factor (tanδ)
RLS	Equivalent Series Resistance
RLP	Equivalent Parallel Resistance
LSB	Inductance Series + Bias
LPB	Inductance Parallel + Bias
L2	Inductance Match
LL	Leakage Inductance
LLO	Leakage Inductance + Offset
С	Capacitance
C2	Capacitance Match
TR	Turns Ratio and Phasing
TRL	Turns Ratio by Inductance
MAGI	Magnetizing Current
VOC	Voltage Open Circuit
IR	Insulation Resistance
HPDC	Hi-Pot (DC)
HPAC	Hi-Pot (AC)
WATT	Wattage
STRW	Stress Watts
SURG	Surge Stress
ILK	Leakage Current
GBAL	General Longitudinal Balance
LBAL	Longitudinal Balance
ILOS	Insertion Loss
RLOS	Return Loss
RESP	Frequency Response
Z	Impedance
ZB	Impedance + Bias
PHAS	Interwinding Phase
ANGL	Phase Angle of Impedance
LVOC	Low Voltage Open Circuit
OUT	Output to User Port
TRIM	Loop on Test to Adjust Value

FAST AND EASY

Windows[®] editor software

Wolfoch Test Program Editor - New Part for Sciencic Program Tester Server Seto 1945	181
CORR HIM	
Scherente	Mainiza
ten	
	-2 IB
	12
	•
	•
	2
Fair Halo, press F1	P I I

Setting up, storing and using test programs could not be easier. Drop windings/cores/screens onto the editor window and connect them up to any of the AT3600's 20 test nodes by dragging the mouse.

Choose from a list of available functions, select the winding(s) to be analyzed, then enter the test conditions into a screen and the test is complete.

Testing

At the press of a front-panel button or a remote switch, an unskilled operator can 100% test wound components in seconds with simple PASS or FAIL lights and an audible signal.

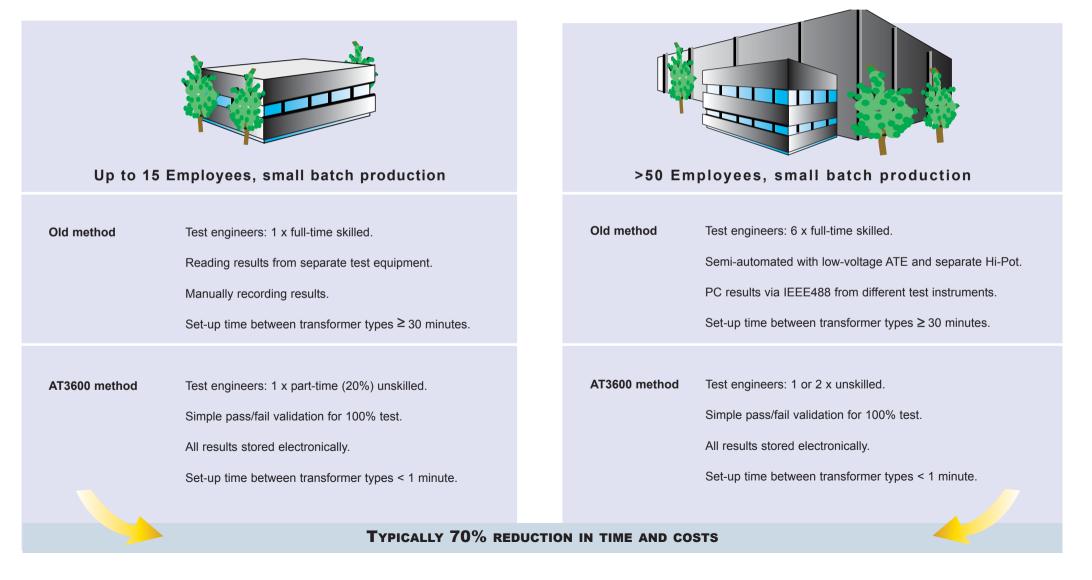
Print results

iron				ferrite							
~		~~~~	~	~~~	ſ	~	~		\sim	~	~~~
1	R	1.6755 kOhm	PASS	0000		1	CTY	199.53	mOhm	PASS	0000
2	R	27.628 Ohm	PASS	0000		2	R	220.14	mOhm	PASS	0000
3	R	31.776 Ohm	PASS	0000		3	R	129.38	mOhm	PASS	0000
4	MAGI	18.241 mA	PASS	0000		4	R	242.36	mOHM	PASS	0000
5	VOC	24.354 V	PASS	0000		5	R	219.43	mOhm	PASS	0000
		POL +	PASS			6	LS	548.28	uH	PASS	0000
6	VOC	24.354 V	PASS	0000		7	LL	39.471	uH	PASS	0000
6	VOC	24.349 V	PASS	0000		8	С	70.597	pF	PASS	0000
		POL +	PASS			9	TR	4.9829		PASS	0000
7	WATT	978.79 mW	PASS	0000				POL +		PASS	
8	IR	5.0000	PASS	0000		10	TR	1.0031		PASS	0000
9	HPAC	22.422 uA	PASS	0000				POL +		PASS	
						11	TR	4.9839		PASS	0000
								POL +		PASS	
RUN	TIME	3.44 sec				12	QL	49.598		PASS	
						13	SURG	13.509	mVsec	PASS	0000
	-		-			14	IR	5.0000	GOhm	PASS	0000
						15	HPAC	94.545	uA	PASS	0000
						RUN	TIME	2.03 s∈	ic.		

Store results remotely

All results can be printed directly to a printer and/or stored on a Windows[®] PC for archiving or reporting.

AT3600 COMPLETE PACKAGE



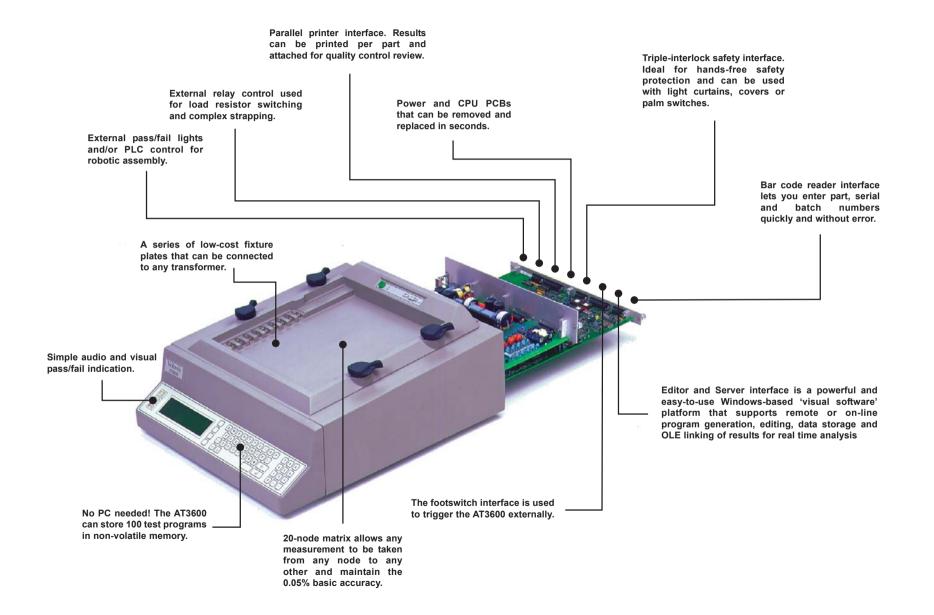
The AT3600 is the most cost-effective solution for all transformer and wound component testing requirements.

The unique design of the AT3600 integrates different test signal sources, measuring circuits and a 20-node connection matrix together with a versatile fixture system to bring you benefits that no other instrument can offer.

CAN WE HELP YOU?

The AT3600 has been designed to meet the needs of all transformer testing requirements with a VA rating of 2KVA or less. Using proven design techniques, the AT3600 can be configured with any combination of tests from a list of over 30 test functions. In addition, versatile interface ports plus easy-to-use Windows[®] software supplied as standard make the AT3600 suitable for use in all production test environments.

An established product



Since 1986, Voltech have produced world leading test instruments for the electrical and electronic industry.

Dedicated to power analysis and wound component testing, Voltech products are used throughout the world. Customers include major household names and leading industrial companies in Asia, Europe and the USA.

Thousands of AT3600 transformer testers are already in use around the world, with companies ranging from low-volume, small-batch production to full automation operating twenty-four hours a day.

AT3600 OVERVIEW

Test	Measurement Range		Test	Signal	Test Fr	Basic Accuracy	
Continuity	10kΩ	10MΩ	n/a	n/a	n/a	n/a	n/a
DC resistance	10μΩ	10MΩ	n/a	n/a	n/a	n/a	0.1%
DC resistance match	1:1000	1000:1	n/a	n/a	n/a	n/a	0.2%
Inductance (series circuit)	1nH	1MH	1mV	5V	20Hz	3MHz	0.05%
Inductance (parallel circuit)	1nH	1MH	1mV	5V	20Hz	3MHz	0.05%
Inductance match	1:10000	10000:1	1mV	5V	20Hz	3MHz	0.1%
Quality factor	0.001	1000	1mV	5V	20Hz	3MHz	0.5%
Equivalent series resistance	10μΩ	10MΩ	1mV	5V	20Hz	3MHz	0.05%
Equivalent parallel resistance	10μΩ	10MΩ	1mV	5V	20Hz	3MHz	0.05%
Leakage inductance	1nH	1kH	20µA	100mA	20Hz	3MHz	0.1%
Dissipation factor (tan δ)	0.001	1000	1mV	5V	20Hz	3MHz	0.5%
Leakage inductance with user offset	1nH	1kH	20µA	100mA	20Hz	3MHz	0.1%
Interwinding capacitance	100fF	1mF	1mV	5V	20Hz	3MHz	0.1%
Capacitance match	1:1000	1000:1	1mV	5V	20Hz	3MHz	0.2%
Turns ratio and phase (+ or -)	1:100k	100k:1	1mV	5V	20Hz	3MHz	0.1%
Turns ratio by inductance	100:1	1:100	1mV	5V	20Hz	3MHz	0.1%
Interwinding phase	-360°	+360°	1mV	5V	20Hz	3MHz	0.05°
Magnetizing current	1μA	2A (3Apk)	1V	270V	20Hz	1.5kHz	0.1%
Open circuit voltage	100µV	650V	1V	270V	20Hz	1.5kHz	0.1%
Leakage current	1μA	10mA	1V	270V	20Hz	1.5kHz	0.5%
Insulation resistance	1MΩ	100GΩ	100V	7kV	DC	DC	1%
Hi-pot (DC)	1μA	3mA	100V	7kV	DC	DC	3.2%
Hi-pot (AC)	10µA	10mApk	100V	5.5kV	50Hz	1kHz	3.0%
Inductance with bias (series)	1nH	1MH	1mV	5V	20Hz	3MHz	0.05%
Inductance with bias (parallel)	1nH	1MH	1mV	5V	20Hz	3MHz	0.05%
Wattage	1mW	40W	1V	270V	20Hz	1.5kHz	0.3%
Surge stress test	1mV-s	1KV-s	100V	5kV	n/a	n/a	3.0%
Stress wattage	1mW	40W	1V	270V	20Hz	1.5kHz	1%
General longitudinal balance	0dB	100dB	1mV	5V	20Hz	3MHz	0.5dB
Longitudinal balance	0dB	100dB	1mV	5V	20Hz	3MHz	0.5dB
Insertion loss	-100dB	100dB	1mV	5V	20Hz	3MHz	0.5dB
Return loss	-100dB	100dB	1mV	5V	20Hz	3MHz	0.2%
Frequency response	-100dB	100dB	1mV	5V	20Hz	3MHz	1.0dB
Impedance	1mΩ	1MΩ	1mV	5V	20Hz	3MHz	0.2%
Impedance with bias	1mΩ	1MΩ	1mV	5V	20Hz	3MHz	0.2%
Phase angle of impedance	-360°	+360°	1mV	5V	20Hz	3MHz	0.05°
Low voltage open circuit	100µV	650V	1mV	5V	20Hz	3MHz	0.1%
Trimming adjustment	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Output to user port	n/a	n/a	n/a	n/a	n/a	n/a	n/a

AT3600 SPECIFICATIONS

Basic Accuracy	Environmental Conditions							
n/a	Line input							
0.1%	IEC 3-pin socket							
0.2%	90 to 265V ac, 48Hz to 65Hz @ 200VA							
0.05%	Fuse 3.15AT							
0.05%								
0.1%	Dielectric strength							
0.5%	2kV ac 50Hz for 1 minute, line input to case.							
0.05%	Storage Temperature							
0.05%	-40° to +70°C							
0.1%								
0.5%	Operating temperature							
0.1%	0° to 40°C							
0.1%	0 10 40 0							
0.2% 0.1%	Humidity							
0.1%								
0.05°	10 to 90% RH non-condensing							
0.1%	Machania							
0.1%	Mechanical							
0.5%	Weight: approx. 23kg							
1%	D							
3.2%								
3.0%	E E							
0.05%	A							
0.05%	· · · · · · · · · · · · · · · · · · ·							
0.3%	B B							
3.0%	Videch AT960							
1%								
0.5dB								
0.5dB	A = 50mm height of front edge							
0.5dB	B = 442mm full width							
0.2%	C = 155mm front height							
1.0dB	D = 545mm full length							
0.2%	E = 210mm rear height							
0.2%								
0.05°								
0.1%								
n/a								

Accuracies based on operating temperature of $23^{\circ}C \pm 5^{\circ}C$. While every care has been taken in compiling the information in this publication, Voltech Instruments cannot accept legal liability for any inaccuracies. Voltech Instruments has an intensive program of design and development that may alter product specification. Voltech Instruments reserves the right to alter specifications without notice and whenever necessary to ensure optimum performance from its product range. © 2002 Voltech Instruments. All rights reserved.

Voltech www.voltech.com

VPN 86-219/3

FOR MORE DETAILS, CONTACT YOUR LOCAL AT3600 DISTRIBUTOR:

Luxembourg

Air-Parts B.V.B.A.

Jean Marie Bonnet

Netherlands

Tel: +31 172 422 455

Air-Parts B.V.

Robert Daems

Tel: +32 (0)2241 6460

Fax: +32 (0)2241 8130

Belgium

Air-Parts B.V.B.A. Jean Marie Bonnet Tel: +32 (0)2241 6460 Fax: +32 (0)2241 8130

Denmark

Cvncrona AB Sixten Wikberg Tel: +46 (0)8 531 94 300 Fax: +46 (0)8 531 94 310

Finland

Cyncrona AB Sixten Wikberg Tel: +46 (0)8 531 94 300 Fax: +46 (0)8 531 94 310

France

BFI OPTILAS S.A. Marc Bringue Tel: +33 (0)160 79 89 08 Fax: +33 (0)160 79 89 03

Germany

KUST Messgeräte GmbH Gerhard Stenger Tel: +49 6441 30001 Fax: +49 6441 30002

Hong Kong Chinatech Corporation Joseph Hao Tel: +852 2755 9773 Fax: +852 2755 1127

India **Technical Trade Links** Raiesh Sawant Tel: +91 2285 02412

Italy

Japan

H. Sato

Korea

Voltech Instruments Ltd.

TSJ Corporation

Newtronix Co. Ltd.

Tel: +82 2652 4663

Fax: +82 2652 4662

Kyung-Hyun Cho

Fax: +91 2285 06719 Fax: +31 172 421 022 Norway Cyncrona AB Power Tech S.r.l. Davide Fraconti Tel: +39 371 211137

Sixten Wikberg Tel: +46 (0)8 531 94300 Fax: +39 371 217019 Fax: +46 (0)8 531 94310

Shenzhen (China) Chinatech Corporation Joseph Hao Tel: +813 5466 9093 Tel: +867 55226 5091 Fax: +813 5466 9213 Fax: +867 55242 5638

Singapore Schaffner EMC Pte Ltd. Poon Khai Loon Tel: +65 3773 283 Fax: +65 3773 281

Sweden Cvncrona AB Sixten Wikberg Tel: +46 (0)8 531 94 300 Fax: +46 (0)8 531 94 310

Switzerland Emitec AG Mario Christen Tel: +41 417 486010 Fax: +41 417 486011

Taiwan Chinatech Corporation Grover Lin Tel: +886 22916 0977 Fax: +886 22912 6641

United Kingdom

Voltech Instruments Ltd. Leigh Jacobs Tel: +44 (0)1235 834555 Fax: +44 (0)1235 835016

United States Voltech Instruments Inc. Jeff Roffee Tel: +1 919 431 0015 Fax: +1 919 431 0090

Voltech Instruments Inc.

148 Sixth Street, Harwell International Business Centre, Didcot, Oxon, OX11 0RA, UK

Tel: +44 (0)1235 834555, Fax: +44 (0)1235 835016, E-mail: sales@voltech.co.uk

2725 East Millbrook Road, Suite 121, Raleigh, NC 27604, USA

Tel: +1 919 431 0015, Fax: +1 919 431 0090, E-mail: sales@voltech.com