Oscilloscopes

CS-5300 SERIES

100MHz 2-Channel Programmable Oscilloscope (With Digital Readout / Cursor)

CS-5370P

100MHz 3-Channel Oscilloscope (With Digital Readout / Cursor) CS-5370
50MHz 3-Channel Oscilloscope (With Digital Readout / Cursor) CS-5350
100MHz 3-Channel Oscilloscope

50MHz 3-Channel Oscilloscope

OUTLINE

The CS-5300 Series are 3-channel (2-channel for CS5370P) Oscilloscopes developed with concepts of high function design, high accuracy and easy operation. The panel layout never diminishes the intuitive and highspeed response provide fatigue free operation even after long-hours of use. These models incorporating readout function (with CS-5370P/5370/5350) offer you parameter measurement and auto setup functions enabling to measure AC voltage (Vp-p), DC voltage, frequency and
period. All of these models are provided with full features including $\pm 2 \%$ high-accuracy measurement, delay sweep function, automatic triggering and high intensity, high-resolution CRT. The CS-5300 Series with highperformance will surely assist you in many kinds of field activities.

CS-5370P/5370/5350 FEATURES

Parameter Auto Measurement Function

It is possible to measure the voltage, frequency and period automatically just input the signal. Especially for voltage measurement, measurement mode is automatically selected according to the input selector. For example, when the AC input is selected, "Peak-to-Peak" voltage is automatically measured, and when the DC input is selected, DC voltage is measured automatically.

Auto Setup Function

RS-232C OPTION

Photo: CS-5370P

CS-5300 SERIES

Cursor Measurement Function

The cursor measurement function allows a high accuracy measurement of signal values. When the probes are used, its attenuation ratio can be converted automatically. It is also possible to measure the voltage value and phase differences. When the delay
sweep is used, the delay time is also displayed, enabling an accurate measurement results without any errors due to visual checks in conventional systems.

CH3 readout, Sensitivity switch function (CS-5370, CS-5350)
In addition to the normal readout cursor, a CH 3 readout function is also provided enabling a cursor measurement of the CH 3 signal. The sensitivity is selectable from $0.1 \mathrm{~V} / \mathrm{div}$. and $0.5 \mathrm{~V} / \mathrm{div}$.

Programmable fanction (CS-5370P only)

Internal non volatile program memory allows programmed sequences of up to 100 steps.
Optional RS-232C or GP-IB interface card enable bus controlled set up and waveform adjustment.

Photo: CS-5350

CS-5370P/CS-5370/CS-5350 SPECIFICATIONS

Model			CS-5370P/CS-5370			CS-5350		
CRT Type/accelerating voltage			150 mm rectangular with iinternal graticule 8×10 div. (1 div. $=10 \mathrm{~mm}$) / approx. 12 kV (approx. 17 kV for CS-5370P)					
Vertical Axis (CH1, CH2)								
Sensitivity			5 mV to $5 \mathrm{~V} /$ div. $\pm 2 \% 1 \mathrm{mV}, 2 \mathrm{mV} / \mathrm{div} . \pm 5 \%$ 1-2-5 step, 12 ranges, fine adjustable within the selected range					
Input Impedance			$1 \mathrm{M} \Omega \pm 1 \%$ approx. 20 pF					
Frequency Response								
	5 mV to $5 \mathrm{~V} / \mathrm{div}$		DC: DC to 100 MHz (within -3 dB) AC: 5 Hz to 100 M Hz (within -3 dB)			DC: DC to 50 MHz (within -3 dB) AC: 5 Hz to 50 MHz (within -3 dB)		
	$1 \mathrm{mV}, 2 \mathrm{mV} / \mathrm{div}$		DC: DC to 20 MHz (within -3 dB) AC: 5 Hz to 20 M Hz (within -3 dB)					
Rising Time			5 mV to $5 \mathrm{~V} /$ div.: approx. 3.5 ns $1 \mathrm{mV}, 2 \mathrm{mV} /$ div.: approx. 17.5 ns			5 mV to $5 \mathrm{~V} /$ div.: approx. 7 ns $1 \mathrm{mV}, 2 \mathrm{mV} /$ div.: approx. 17.5 ns		
Signal Delay Time			Leading edge can be confirmed using a square wave that has a rising time of less than this unit					
Crosstalk			-40 dB (at 1 kHz)					
M ax. Input Voltage			$800 \mathrm{Vp-p}$ or 400 V (DC +AC peak, 1 kHz)					
Vertical Axis (CH3) (except CS-5370P)								
Sensitivity			$0.1 \mathrm{~V}, 0.5 \mathrm{~V} / \mathrm{div} . \pm 2 \%$					
Input Impedance			$1 \mathrm{M} \Omega \pm 1 \%$ approx. 20 pF					
Frequency Response			DC: DC to 100 MHz (within -3 dB)			DC: DC to 50 M Hz (within -3 dB)		
Rising Time			Approx. 3.5 ns			Approx. 7 ns		
Signal Delay Time			Leading edge can be confirmed using a square wave that has a rising time of less than this unit					
M ax. Input Voltage			$100 \mathrm{Vp}-\mathrm{p}$ or 50 V (DC +AC peak, 1 kHz)					
Vertical Axis								
Operation M ode			CH1, CH2, CH3 (except for CS-5370P), ADD, ALT, CHOP					
Chopping Frequency			Approx. 250 kHz					
Polarity Inversion			CH2 only					
Horizontal (CH2 Input)								
Sensitivity			5 mV to $5 \mathrm{~V} / \mathrm{div} . \pm 3 \% 1 \mathrm{mV}, 2 \mathrm{mV} /$ div. $\pm 5 \%$ 1-2-5 step, 12 ranges, fine adjustable within the selected range					
Input Impedance			Same as vertical axis (CH2)					
Frequency Response			DC: DC to $1 \mathrm{MHz}(-3 \mathrm{~dB}), \mathrm{AC}$: 5 Hz to $1 \mathrm{MHz}(-3 \mathrm{~dB}$)					
X-Y Phase Difference			Less than 3° at 100 kHz					
Operation M ode			Switchable to X-Y mode with H.M ODE key CH1: Y axis, CH2: X axis					
M ax. Input Voltage			Same as vertical axis (CH2)					
Sweep								
Sweep M ode			A, ALT, B, X-Y					
Sweep Time	A Sweep		0.5 s to $50 \mathrm{~ns} / \mathrm{div} . \pm 2 \% 1-2-5$ step, 22 ranges, fine adjustable within the selected range					
	B Sweep		50 ms to $50 \mathrm{~ns} / \mathrm{div} . \pm 2 \%$ 1-2-5 step, 19 ranges					
Sweep M agnification			$\times 10 \pm 5 \%$ ($\pm 8 \%$ at $0.5 \mu \mathrm{~s} / \mathrm{div}$.)					
Linearity			$\pm 3 \%$ ($\pm 5 \%$ at $\times 10 \mathrm{MAG}$ mode)					
Hold Off			A Sweep, continuously variable from NORM position					
Trace Separation			B Sweep is continuously variable ± 4 div. with respect to A sweep.					
Delay Sweep M ode			Continuous delay (After Delay), Synchronous delay (B TRIG'D): Synchronized with trigger signal					
Delay Time			Continuously variable from 0.2 div. to 10 div. ($0.5 \mathrm{~s} / \mathrm{div}$. to $50 \mathrm{~ns} / \mathrm{div}$.)					
Delay Time Error			\pm (3% of setting value $+1 \%$ of full scale) + (0 to 300 ns)					
Delay Jitter			20000 (10 times of A Sweep setting value) : 1 (at A Sweep $1 \mathrm{~ms} / \mathrm{div}$, B Sweep $1 \mu \mathrm{~s} / \mathrm{div}$)					
Triggering Mode								
Trigger M ode			AUTO, NORM, FIX, SINGLE, RESET					
Trigger Sources			VERT, CH1, CH2, CH3 (except for CS-5370P), LINE					
Trigger Coupling			AC, HF-REJ, DC, TV-F, TV-L					
Trigge (NOR	sitivity	Coupling	Frequency	NORM	FIX*	Frequency	NORM	FIX*
	DE)	AC	10 Hz to 50 M Hz	1.0 div	1.5 div	10 Hz to 20M Hz	1.0 div	1.5 div
			50 M Hz to 100 M Hz	1.5 div	2.0 div	20 M Hz to 50 M Hz	1.5 div	2.0 div
		HF-REJ	10 Hz to 10 kHz	1.0 div	1.5 div	10 Hz to 10 kHz	1.0 div	1.5 div
			10 kHz or more	$>$ min	$>$ min	10 kHz or more	$>$ min	$>$ min
		DC	DC to 50 M Hz	1.0 div	1.5 div	DC to 20 MHz	1.0 div	1.5 div
			50 M Hz to 100 M Hz	1.5 div	2.0 div	20 M Hz to 50 M Hz	1.5 div	2.0 div
		TV-F, TV-L	Composite video signal	1.5 div		Composite video signal	1.5 div	
			(Above values are obtained with the signal input of: AUTO: 40 Hz or more, FIX: 50 Hz or more Internal sensitivity indicated as the amplitude on the CRT. Sensitivity in HF-Rej mode ">min" denotes the amplitude required for synchronization will increase.)					
Calibration Signal								
Waveform			Square wave					
Polarity			Positive					
Amplitude			$1 \mathrm{Vp}-\mathrm{p} \pm 1 \%$					
Frequency			$1 \mathrm{kHz} \pm 0.1 \%$					

Model	CS-5370P/CS-5370	CS-5350
Intensity Modulation		
Input Voltage	Dims at TTL high level (+5 V)	
Input Impedance	Approx. $10 \mathrm{k} \Omega$	
Frequency Response	DC to 5 MHz	
M ax. Input Voltage	$84 \mathrm{Vp-p}$ or 42 V ($\mathrm{DC}+\mathrm{AC}$ peak, 1 kHz)	
CH1 Signal Output (50 2 Load)		
Output Voltage	Approx. 50 mVp -p/ div.	
Output Impedance	Approx. 50Ω	
Frequency Response		
5 mV to $5 \mathrm{~V} / \mathrm{div}$.	100 Hz to $100 \mathrm{M} \mathrm{Hz} \mathrm{(-3} \mathrm{dB)}$	100 Hz to $50 \mathrm{MHz}(-3 \mathrm{~dB})$
$1 \mathrm{mV}, 2 \mathrm{mV} / \mathrm{div}$.	100 Hz to $20 \mathrm{M} \mathrm{Hz}(-3 \mathrm{~dB})$	
Trace Rotation	Enables trace rotation adjustment by sem	on the panel.

Readout Section

Panel Setup Value		CH1, CH2 scale factor (with probe detection), CH3 scale factor (except CS-5370P), V-UNCAL, ADD, INV, A/ B Sweep scale factor (MAG conversion, "*" is displayed in M AG mode), X-Y, Sweep UNCAL, DELAY, TIM E, B TRIG'D
Cursor M easurement ($\Delta \mathrm{V} 1$ only in $\mathrm{X}-\mathrm{Y}$ mode)		$\Delta \mathrm{V}$: Voltage display by converting CH3 scale factor (except CS-5370P) $\Delta \mathrm{T}$: Time display by converting A Sweep scale factor $\Delta 1 / \mathrm{T}$: Frequency display by converting Sweep scale factor
Volts/ Div or Time/ Div UNCAL mode		RATIO: Voltage ratio, time ratio display with 5 div. on the CRT as 100\% PHASE: Phase difference display with 5 div. on the CRT as 360°
Resolution/ M easurement Error		10 bits/ $\pm 4 \%$
M easuring Range	Vertical	M ore than ± 3.6 div. from the center of CRT
	Horizontal	M ore than ± 4.6 div. from the center of CRT
Parameter auto setting function		Each parameter is measured and displayed for the signal selected as the trigger signal source from CH1 or CH2
Frequency (FRQ)		M ode selectable in Cursor mode. M easured with internal counter to be displayed
Frequency Range		2 Hz to 100 M Hz (2 Hz to 50 M Hz for CS-5350)
Effective Digits/ Accuracy		3 digits/ 0.01\% ± 1 digit
M easurement Sensitivity		Same as trigger sensitivity
Period (PER)		M ode selectable in Cursor mode. M easured with internal counter to be displayed
M easurement Range		0.5 s to 10 ns (0.5 s to 20 ns for CS-5350)
Effective Digits/ Accuracy		3 digits/ $0.01 \% \pm 1$ digit
M easurement Sensitivity		Same as trigger sensitivity
AC Voltage (Vp-p)		M ode selectable in Cursor mode. Peak-to-peak voltage is measured and displayed
M easurement Range		0.5 div. to Effective CRT area
Frequency Range		10 Hz to 100 kHz
Effective Digits/ Accuracy		3 digits/ 10 Hz to 40 Hz : \pm \{8\% + attenuator setup value (V/ div) $\times 0.04 \mathrm{div}\}$
		40 Hz to $100 \mathrm{kHz}: \pm\{3 \%$ + attenuator setup value (V/ div) $\times 0.04 \mathrm{div}\}$
DC Voltage (DCV)		M ode selectable in Cursor more. Average DC voltage is measured and displayed
Sensitivity		0.5 div. to Effective CRT area
Effective Digits/ Accuracy		3 digits/ \pm \{ $3 \%+$ attenuator setup value (V/ div) $\times 0.04$ div $\}$
Auto Setup		For CH1, CH2, Vertical axis attenuator, Sweep range, Vertical position, Horizontal position are automatically setup
Period		1.5 to 5 periods (H.Variable,: CAL mode, for input signal up to 10 MHz)
Amplitude		2 to 4 div. (1 to 2 div. for 2-channel)
Frequency (Size wave)		50 Hz to 100 M Hz (50 Hz to 50 M Hz for CS-5350)
Position		Vertical axis: 1 channel ; almost center of CRT, 2 channel ; CH1 approx. +2 div., CH2 approx. - 2 div. from the center of CRT Horizontal axis: starts from left edge of CRT scale
Backup		Panel setup values are backed up by built-in battery. Battery service life approx. 30,000 hours (with room temperature)

Programable Function (CS-5370P only)

Program capacity	Maximum 100 steps (Possible to divide up to 5 groups.)

Power Supply \& Others

CS-5300 SERIES COMMON FEATURES

3-Channel 8-Trace Waveform Display (CS-5370P, 2 channel)

CS-5300 series enable the display of CH 3 input in addition to CH 1 and CH 2 . These three input signals to $\mathrm{CH} 1, \mathrm{CH} 2$ and CH3 can be displayed at the same time as the main (A) sweep waveform. Furthermore, an alternated delay sweep function displayed as the delayed (B) sweep waveforms of each signal.

High-Sensitivity Design with Vertical Axis of $1 \mathbf{~ m V} / \mathbf{d i v}$

The vertical axis sensitivity can be varied continuously from 1 $\mathrm{mV} /$ div. to $5 \mathrm{~V} /$ div. using the 1-2-5 step attenuator. The $1 \mathrm{mV} / \mathrm{div}$. position is very useful to measure low-level and complicated signals. (Frequency response at $1 \mathrm{mV} / \mathrm{div}$. and $2 \mathrm{mV} /$ div are DC to $20 \mathrm{M} \mathrm{Hz}(-3 \mathrm{~dB}))$.

Automaticv Sync (FIX) Function

With this function, the synchronization level is automatically controlled by tracking the amplitude of the waveform to maintain the sync lock status. This function eliminates annoying and complicated synchronization operations.

Ease Operate Panel Layout

The CS-5370P, CS-5370 and CS-5350 used touch switches and LEDs. The CS-5375 and CS-5355 used push switches and lever switches for easy operation.

Delayed sweep with waveform partial magnification capability

The main (A) sweep waveform in which the magnified section is brightened by intensity modulation and the delayed (B) sweep waveform which shows only the magnified section can be observed simultaneously. This is a real alternate delayed sweep.

V mode sync for stable display of 3 signals (2 Signals of CH1 and CH2 for CS-5370P)

Even when the $\mathrm{CH} 1, \mathrm{CH} 2$ and CH 3 input signal frequencies are different, each signal can be synchronized securely and its waveform can be displayed stably.

High-Accuracy $\mathbf{\pm 2 \%}$ Design for More Precision Measurement

In order to obtain highly reliable measurement results, the vertical axis sensitivity and sweep time for the main circuit is maintained within $\pm 2 \%$ precision. Other specifications also guarantees the rated values (under temperature conditions of 10 to $30^{\circ} \mathrm{C}$, humidity of 85% or less).

Photo: CS-5375

CS-5300 SERIES

Maximum sweep rate of $5 \mathrm{~ns} /$ div ($\times 10 \mathrm{MAG}$)

The sweep rate can be varied continually from $0.5 \mathrm{~s} /$ div to 50 $\mathrm{ns} /$ div. The signal delay line is installed so that the positive rise of high-speed signals and highfrequency signals can be measured accurately

Built in Video clamp circuit for easy operation

- Horizontal TV signal

- Vertical TV signal

Built in Video Clamp function which enables observation of the flame and line TV signals at the touch of a button, while highstability synchronization is obtained without performing annoying synchronizing operations.

Square-Type 150 mm CRT with Self-Illuminated Light and Inside Scale ($\mathbf{1 2} \mathbf{~ k V) ~ (1 7 k V ~ f o r ~ C S - 5 3 7 0 P) ~}$
A large-sized, square, dome-mesh type CRT with rear accelerator is employed. It features both high intensity and high resolution while providing accurate measurements without parallax view. The auto focus circuit is also incorporated to display sharp waveforms at all times.

Single sweep for observations of single-shot channel

The single sweep function is powerful in measurement of singleshot or sudden channel. Waveform photography using a camera is as easy as ordinary, visual observations. It is easy not only for obser vations during normal visual inspections but also for camera shots of the waveforms.

Variable hold-off allowing observation of waveforms with complicated cycle
Signals which are hard to be synchronized due to complicated repetition cycles, for example digital signals and video signal bursts, can be synchronized stably by converting them into the hold-off time.

High-Accuracy Calibration Signals

A calibration signal output is provided to output the highly accurate frequency of $\pm 0.1 \%$ (CS-5370P/ CS-5370/ CS-5350) and voltage accuracy of $\pm 1 \%$ enabling checking of the measurement precision at any required time.

CH1 signal output connector

The CH 1 signal output is obtained by branching the input signal in the middle of the signal line. As this connector outputs the input signal at a rate of $50 \mathrm{mV} /$ div, connecting a frequency counter makes it possible to measure the frequency of a very low signal while observing its waveform

Wide Dynamic Range and Distortion-Free Accurate Waveform Display

Its wide dynamic range having greater margins assures the linearity of the waveforms displayed on the CRT, providing highly accurate waveform displays without any distortion up to the upper frequency limits.

Photo: CS-5355

Other Features

- All position knobs and controls are provided on the front panel.
- A High-sensitivity X-Y function is convenient for the measurement of phase differences between two input signals.
- A Trace Rotation function allows an easy correction of the inclination of the trace line due to earth magnetism.
- LINE Synchronization is provided
- A Trace Separation function shifts the B sweep waveform upward or downward by 4 div. from A sweep waveform.
- The waveform to which the brightness modulation is applied can also be observed.
- Added or extracted waveforms using ADD and CH2 INV functions can also be observed.
- Scale illumination convenient for taking photographs or observation in dark areas is provided.
- CRT scale also provides $0,10,90$ and 100% indications; convenient for measurement of rising time, etc.
- A 10-times sweep waveform magnification function (X10 M AG) is provided.

CS-5375/CS-5355 SPECIFICATIONS

Model		CS-5375			CS-5355		
Triggering Mode							
Trigger M ode		AUTO, NORM, FIX, SINGLE, RESET					
Trigger Sources		VERT, CH1, CH2, CH3, LINE					
Trigger Coupling		AC, HF-REJ, DC, TV-F, TV-L					
Trigger Sensitivity	Coupling	Frequency	NORM	FIX*	Frequency	NORM	FIX*
	AC	10 Hz to 50 M Hz	1.0 div	1.5 div	10 Hz to 20M Hz	1.0 div	1.5 div
		50 M Hz to 100 M Hz	1.5 div	2.0 div	20 M Hz to 50 M Hz	1.5 div	2.0 div
	HF-REJ	10 Hz to 10 kHz	1.0 div	1.5 div	10 Hz to 10 kHz	1.0 div	1.5 div
		10 kHz or more	$>$ min	> min	10 kHz or more	$>$ min	$>$ min
	DC	DC to 50 MHz	1.0 div	1.5 div	DC to 20 MHz	1.0 div	1.5 div
		50 M Hz to 100 M Hz	1.5 div	2.0 div	20 M Hz to 50 M Hz	1.5 div	2.0 div
	TV-F, TV-L	Composite video signal	1.5 div		Composite video signal	1.5 div	
		(Above values are obtained with the signal input of: AUTO: 40 Hz or more, FIX: 50 Hz or more Internal sensitivity indicated as the amplitude on the CRT. Sensitivity in HF-Rej mode " $>$ min" denotes the amplitude required for synchronization will increase.)					
Calibration Signal							
Waveform		Square wave					
Polarity		Positive					
Amplitude		$1 \mathrm{Vp} \mathrm{p} \pm 1 \%$					
Frequency		$1 \mathrm{kHz} \pm 0.1 \%$					
Modulation							
Input Voltage		0 to +5 V , goes off at +5 V					
Input Impedance		Approx. $10 \mathrm{k} \Omega$					
Frequency Response		DC to 5 MHz					
M ax. Input Voltage		$84 \mathrm{Vp}-\mathrm{p}$ or 42 V ($\mathrm{DC}+\mathrm{AC}$ peak, 1 kHz)					
CH1 Signal Output (50Ω Load)							
Output Voltage		Approx. 50 mV p-p/ div.					
Output Impedance		Approx. 50Ω					
Frequency Response							
5 mV to $5 \mathrm{~V} / \mathrm{div}$		100 Hz to $100 \mathrm{M} \mathrm{Hz}(-3 \mathrm{~dB})$			100 Hz to $50 \mathrm{M} \mathrm{Hz}(-3 \mathrm{~dB})$		
Trace Rotation $1 \mathrm{mV}, 2 \mathrm{mV} / \mathrm{div}$.		100 Hz to $20 \mathrm{MHz}(-3 \mathrm{~dB})$					
		Bright line angle adjustable using semi-fixed resistor on the control panel.					

Power Supply \& Others

