PRECISION HIGH LEVEL NOISE GENERATORS

10 MHz to 18 GHz

- Up to 35 dB ENR
- 15% Bandwidth
- Traceable Calibration

Description

The MT7650B and MT7660A series are high level, solid state noise generators designed for receiver noise figure or noise temperature monitoring applications which require significant decoupling at the point of noise injection. Use of high value couplers reduces noise degradation of the receivers when the monitoring function is not active.

These generators operate over a 15% bandwidth in the frequency range from 10 MHz to 18 GHz with up to 35 dB Excess Noise Ratio (ENR). The high ENR permits noise injection into a receiver system through a coupler while maintaining an injected noise level compatible with typical noise measuring instruments.

Specifications

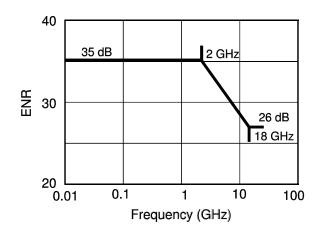
Frequency Range 0.01 to 18 GHz
Bandwidth
Maximum ENR See chart
VSWR (typical, noise on)
Calibration Frequencies Center frequency plus band edges
Output Connector
Input Connector
Power Required +28 volts @ < 20 mA

- 1 Cross-section is the same as the MT7615A on page 91.
- 2 Version number is assigned by the Sales Department at the time of quotation.

MT7650B

Model	Output Connector	Overall Length (inches)	Former Eaton Model Number
MT7650B 2	Type N male	4.50	7650-xxx
MT7660A 2	SMA female	4.25	7660-xxx

Ordering Information


Please specify:

Basic model (MT7650B or MT7660A)

Frequency range

ENR (see graph for maximum ENR versus frequency)

Maximum ENR Versus Frequency

