Main Specifications (Main Unit)

*1 Under standard operating conditions (temperature of $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}, 55 \% \pm 10 \% \mathrm{RH}$, warm-up of 30 min . or more), after calibration. Recommended calibration period: 1 year. *2-*11 See the figure on page 11 for notes on the maximum input voltage and maximum allowable common mode voltage

Basic specifications	
Input section	
Type	Plug-in module (A/D converters built in to each unit)
Number of slots	8
Horizontal	
Maximum record length	2.5 MW/CH, 50 MW total
Time axis accuracy ${ }^{\text {¹ }}$	$\pm 0.005 \%$
Time axis setting	$100 \mu \mathrm{sec}$ to 5 sec (in steps of 1, 2, or 5)
	10 sec to 60 min (in steps of 1-2-3-5-6)
	$100 \mathrm{~min} / 120 \mathrm{~min} / 300 \mathrm{~min}$
	$10 \mathrm{~h} / 20 \mathrm{~h} / 30 \mathrm{~h} / 50 \mathrm{~h} / 100 \mathrm{~h} / 120 \mathrm{~h}$
	10 days/20 days/30 days
Acquisition modes	
Normal	Maximum sample rate of $10 \mathrm{MS} / \mathrm{s}$
Envelope	Holds the peak value at each module's maximum sample rate
Box average	Increases the A/D resolution by up to 4 bits (to 16 bits)
Averaging	Number of averagings 2 to 65536 ($2^{\text {n }}$ steps)
Roll	Roll display for recording time of 1 sec or more
Triggers	
Modes	AUTO, AUTO LEVEL, NORMAL, SINGLE, SINGLE(n)
Trigger position	0 to 100\% (in steps of 0.1\%)
Simple triggers Source	CH1 to CH16, LINE, EXT, LOGIC_A, LOGIC_B, Time
Slope selection	CH 1 to CH 16 : Rise, fall, rise/fall
	EXT (external trigger input), LOGIC_A, LOGIC_B: Rise/fall
	Time: Date (year/month/date), hour (hours/minutes), time interval (1 min to 24 hours)
Enhanced triggers Source	CH1 to CH16, LOGIC_A, LOGIC_B (each logic bit can be combined with AND or OR logic)
Enhanced triggers Type	$\mathrm{A} \rightarrow \mathrm{B}(\mathrm{n}), \mathrm{A}$ delay $\mathrm{B}, \mathrm{B}>$ Time, $\mathrm{B}<$ Time, B Time Out, Period, Window, Wave Window
- Wave Window mode restriction: ACQ mode: NORMAL; Trig mode: Normal, Single,	
Single(N); Sample rate: 500 kHz to 10 kHz Not available in roll mode or envelope.	
respective voltage modes).	
Screen updating rate	Max 30 times/sec for a single waveform

Display

Display
Effective screen size
Resolution
Waveform display pixels
0.4 -inch color TFT liquid crystal display
$211.1 \mathrm{~mm} \times 158.4 \mathrm{~mm}$
$800 \times 600^{* 1}$
650×512 (normal waveform display)
750×512 (in wide waveform display mode)
Display modes
Split Single, dual, triad, quad, octal, or hecta
Zoom Main, Main\&Z1, Main\&Z1\&Z2, Main\&Z2, Z1ONLY, Z2
ONLY, Z1\&Z2
(Z1 and Z2 are abbreviations for zoom area 1 and 2, respectively)
XY Single Mode (X is fixed, Y is set by user), Quad Mode
(XY1, XY2, XY3, XY4)
PERSIST Overlays in 1 color
Accumulation

- The LCD may contain some pixels that are always ON or always OFF In addition, variations in brightness may occur due to the characteristics of liquid crystal display. This does not indicate any problem with the display.

Printer

Built-in printer	
Printing method	Thermal line-dot
Paper	A4 size (210 mm wide $\times 20 \mathrm{~m}$)
Effective recording width	$200 \mathrm{~mm}=1600$ dots
Functions	Real time printing, XY printing, screen copying
High resolution printing of specified range	Zoom Print, Fine Print (print specified range in high resolution)
Maximum printing speed	$20 \mathrm{~mm} / \mathrm{s}(500 \mathrm{~ms} / \mathrm{div}$)
Real time printing (chart recorder mode)	
Functions	Print/record waveforms in real time and automatically save to memory in the background (up to 1000 div)
Resolution $\begin{gathered}\text { Vertic } \\ \text { Horizon }\end{gathered}$	8 dots $/ \mathrm{mm}$ A4 size $(200 \mathrm{~mm})=1600$ dots
	$10 \mathrm{dots} / \mathrm{mm} \mathrm{A4}$ size $(300 \mathrm{~mm})=3000$ dots
Waveform printing Speeds:	$20 \mathrm{~mm} / \mathrm{s}(500 \mathrm{~ms} / \mathrm{div}), 10 \mathrm{~mm} / \mathrm{s}, 5 \mathrm{~mm} / \mathrm{s}, 2 \mathrm{~mm} / \mathrm{s}, 1 \mathrm{~mm}$ $\mathrm{s}, 100 \mathrm{~mm} / \mathrm{min}, 50 \mathrm{~mm} / \mathrm{min}, 25 \mathrm{~mm} / \mathrm{min}, 20 \mathrm{~mm} / \mathrm{min}$, $10 \mathrm{~mm} / \mathrm{min}, 5 \mathrm{~mm} / \mathrm{min}, 2 \mathrm{~mm} / \mathrm{min}, 1 \mathrm{~mm} / \mathrm{min}, 100$ $\mathrm{mm} / \mathrm{h}, 50 \mathrm{~mm} / \mathrm{h}, 25 \mathrm{~mm} / \mathrm{h}, 20 \mathrm{~mm} / \mathrm{h}, 10 \mathrm{~mm} / \mathrm{h}$
Print length (shot length) Memory length	Continuous, $20 \mathrm{~cm}, 50 \mathrm{~cm}, 1 \mathrm{~m}, 2 \mathrm{~m}$
	2.5 MW/CH fixed, 1000 div (depending on the chart speed)
Numerical printing Digital values	Interval: $1 \mathrm{~s}, 2 \mathrm{~s}, 5 \mathrm{~s}, 10 \mathrm{~s}, 15 \mathrm{~s}, 20 \mathrm{~s}, 30 \mathrm{~s}, 1 \mathrm{~min}, 2$ $\mathrm{min}, 5 \mathrm{~min}, 10 \mathrm{~min}, 15 \mathrm{~min}, 20 \mathrm{~min}, 30 \mathrm{~min}, 60 \mathrm{~min}$ Print directions: standard or rotated $180^{\circ} \mathrm{C}$
Print format	Select 1, 2, 3, 4, 8, or 16
	Flexible zone function available when one division selected
Vertical axis format	Select 1 division = 10 div printed or $1 \mathrm{div}=10 \mathrm{~mm}$ printed
Extra information	Gauge display, upper/lower limits, channel markers, time
Annotations Reprint function	CH information, messages, CH data
	Reprints after STOP (enables resetting of format and range specification)
	PDF file output function
Print start/stop	Starts printing on triggers (Single mode, Repeat (Normal) mode): Specified length printed upon triggers.
External termin	Start/stop input terminal ($\mathrm{L}=$ start, $\mathrm{H}=$ stop)

Acquisition memory backup function	
Batteries	Four AA alkaline dry cells (AA/R6) (JIS, IEC type
	name: LR6), or four nickel-metal hydride rechargeable
	batteries
Backed up data	Acquisition memory and waveform data
Backup duration (approximate)	Approximately 150 hours
- Actual backup duration will vary according to operating conditions	

Media drives

Internal media drives

General specifications

Rated supply voltage
Rated supply frequency
Power consumed
Withstand voltage
Insulating resistance
Exterior
Weight

100 to $120 \mathrm{VAC} / 200$ to 240 VAC (switches automatically) $50 / 60 \mathrm{~Hz}$
Approximately 200 VA-MAX
1500 VAC for one minute across power supply and ground $10 \mathrm{M} \Omega$ or greater at 500 VDC across power supply and ground
Approximately $355(\mathrm{~W}) \times 250 \mathrm{~mm}(\mathrm{H}) \times 225 \mathrm{~mm}(\mathrm{D})$, excluding handle and protrusions
Approximately 8.0 kg (main unit only, with full options, including /C8, /C10, /P4)
Approximately 10.3 kg (main unit and eight 701250 modules)
$5^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$

Main Specifications (plug-in modules)

*1 Under standard operating conditions (temperature of $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}, 55 \% \pm 10 \% \mathrm{RH}$, warm-up of 30 min. or more), after calibration. Recommended calibration period: 1 year. Note that the strain modules $(701270 / 71)$ must be balanced.
*2-*11 See the figure on page 11 for notes on the maximum input voltage and maximum allowable common mode voltage.

High-Speed 10 MS/s, 12-Bit Isolation Module (Model 701250)
Input channels
Input couplings
Maximum sample rate
A/D conversion resolution
Input type
Frequency range $(-3 \mathrm{~dB})^{11}$ DC
Input range (10:1) 500 mV to 2 kV (in steps of 1,2 , or 5)
(1:1) 500 mV to 200 V (in steps of 1,2 , or 5)
Effective measurement range 2 times the setting range
DC offset
$1 / 2$ the setting range
Maximum input voltage (1 kHz or less)
In combination with 700929(10:1) ${ }^{-2} 600 \mathrm{~V}$ (DC + ACpeak)
Direct input (1:1) ${ }^{6,}{ }^{1010} 250 \mathrm{~V}$ (DC + ACpeak)
Maximum allowable common mode voltage
In combination with 700929 ($10: 1)^{-3} 400 \mathrm{Vrms}$ (CAT II), 300 Vrms (CAT II)
In combination with $701901+701954(1: 1)^{\circ 9}$
400 Vrms (CAT II), 300 Vrms (CAT II)
Main unit only (1:1) ${ }^{\text {¹1 }} 42 \mathrm{~V}$ (DC+ACpeak) (CAT I and CAT II, 30 Vrms)
DC accuracy ${ }^{\text {¹ }}$
Input impedance
Connector type
Input filter
Temperature coefficient
$\pm(0.5 \%$ of range)
$1 \mathrm{MÉ} \Omega \pm 1 \%$, approximately 35 pF
Isolated type BNC connector
OFF, $500 \mathrm{~Hz}, 5 \mathrm{kHz}, 50 \mathrm{kHz}, 500 \mathrm{kHz}$
Zero point $\pm\left(0.05 \%\right.$ of range) $/{ }^{\circ} \mathrm{C}$ (typical value)
Gain $\pm\left(0.02 \%\right.$ of range) $/{ }^{\circ} \mathrm{C}$ (typical value)

High-Speed 1 MS/s, 16-Bit Isolation Module (Model 701251)

Input channels
Input couplings AC, DC, GND
Maximum sample rate
A/D conversion resolution
Input type
Frequency range $(-3 \mathrm{~dB})^{* 1}$ DC, up to $300 \mathrm{kHz}(50 \mathrm{mV}$ to 200 V range)
Input range $\quad(10: 1) 100 \mathrm{mV}$ to 2 kV range (in steps of 1,2 , or 5)
(1:1) 10 mV to 200 V range (in steps of 1,2 , or 5)
Effective measurement range 2 times the setting range
DC offset $\quad 1 / 2$ the setting range
Maximum input voltage (1 kHz or less)
In combination with $700929(10: 1)^{* 2} 600 \mathrm{~V}$ (DC + ACpeak)
Direct input (1:1) ${ }^{\cdot 6,{ }^{*} 10} 140 \mathrm{~V}$ (DC + ACpeak)
Maximum allowable common mode voltage
In combination with 700929 (10:1) ³ 400 Vrms (CAT II), 300 Vrms (CAT II)
In combination with $701901+701954(1: 1)^{\circ} 9$
400 Vrms (CAT II), 300 Vrms (CAT II)
Main unit only (1:1) ${ }^{* 11} 400 \mathrm{~V}$ (DC+ACpeak) (CAT I and CAT II, 30 Vrms
DC accuracy ${ }^{+1} \quad 50 \mathrm{mV}$ to $200 \mathrm{~V} \quad \pm(0.25 \%$ of range)
20 mV range $\pm(0.3 \%$ of range $)$
10 mV range $\pm(0.5 \%$ of range $)$
$1 \mathrm{M} \Omega \pm 1 \%$, approximately 35 pF
Isolated type BNC connector
Input impedance
Input filter
Temperature coefficient Zero point
OFF, $400 \mathrm{~Hz}, 4 \mathrm{kHz}, 40 \mathrm{kHz}$
50 mV to 20 V range $\pm\left(0.02 \%\right.$ of range) $/{ }^{\circ} \mathrm{C}$ (typical value)
20 mV range $\quad \pm\left(0.05 \%\right.$ of range) $/{ }^{\circ} \mathrm{C}$ (typical
value)
10 mV range
value)
Gain
10 mV to 200 V range
$\pm\left(0.02 \%\right.$ of range) $/{ }^{\circ} \mathrm{C}$ (typical

High-Voltage 100 kS/s, 16-Bit Isolation Module (with RMS) (Model 701260)

Input channels
Input couplings 2
Maximum sample rate
A/D conversion resolution
Input type
Frequency range $(-3 \mathrm{~dB})^{*}$
Waveform measurement mode DC, up to 40 kHz
RMS mesurement mode DC, 40 Hz to 10 kHz
Input range (10:1) 2 V to 20 kV range (in steps of 1, 2, or 5)
Effective measurement range 2 times the setting range
DC offset
(1:1) 200 mV to 2 kV range (in steps of 1,2 , or 5)
AC, DC, GND, AC-RMS, DC-RMS
100 kS/s
16 bits (24,000 LSB/range)
Isolated unbalanced
$1 / 2$ the setting range

Frequency Module (Model 701280)

- Frequency measurement section

Input channels
2
Data update rate $\quad 25 \mathrm{kHz}(40 \mu \mathrm{~s})$
Measurement range(Frequency) 0.01 Hz to 200 kHz
Measurement range(Frequency) 1 Hz to 500 kHz range
Minimum measurement resolution $50 \mathrm{~ns}(20 \mathrm{MHz})$

- Input section

Compatible input signals Encoder pulse input of up to $\pm 42 \mathrm{~V}$
Electromagnetic pickup input (power generator type) ${ }^{* 6}$
AC power supply input of up to
300 Vrms (model 700929 isolation probe required)
Input type
Input couplings AC, DC
Input voltage ranges $(\pm \mathrm{FS}) \quad(1: 1) \pm 1 \mathrm{~V}$ to $\pm 50 \mathrm{~V}$ (6 ranges, steps of 1,2 , or 5) $(10: 1) \pm 10 \mathrm{~V}$ to $\pm 500 \mathrm{~V}$ (6 ranges, steps of 1,2 , or 5$)$
Maximum input voltage (1 kHz or less)
In combination with $700929(10: 1)^{2} \quad 420 \mathrm{~V}$ (DC + ACpeak)
Direct input (1:1)**10 420 V (DC + ACpeak)
Maximum allowable common mode voltage
In combination with 700929 (10:1) ${ }^{+3} 300 \mathrm{Vrms}$ (CAT II)
Direct input $(1: 1)^{111} 42 \mathrm{~V}$ (DC+ACpeak) 30 Vrms (CAT II)
Input impedance $\quad 1 \mathrm{M} \Omega \pm 1 \%$, approximately 35 pF
Connector type Isolated type BNC connector
Input filters
Input pull-up function (can be turned ON/OFF)
Supports open collector, mechanical contact output, $4.7 \mathrm{kQ}(+5 \mathrm{~V})$
Chattering elimination function Setting time 1 ms to 1000 ms
Comparator section Preset Logic ($5 \mathrm{~V}, 3 \mathrm{~V}, 12 \mathrm{~V}, 24 \mathrm{~V}$), electromagnetic pickup, zero cross, pull-up (5 V), AC100V, AC200V, userdefined
Threshold range \pm FS range, resolution 1% units
Hysteresis $\pm 1 \%, \pm 2.5 \%, \pm 5 \%$ of FS
LED display (per CH) ACT (green) Operating status (lights during pulse input) OVER (red) Overdrive status (lights when input exceeds range)
Compatible probes/cables (10:1 probe) 700929/701940 (1:1 cable) 366926

- Measurement function details	
Measurable parameters	(Frequency (Hz), rpm, rps, period (sec), duty (\%), power supply frequency (Hz), pulse width (sec), pulse integration, speed
Effective measurement range	2 times the setting range
Resolution of measured data	16 bit (24,000 LSB/range)
Measured parameters and measuring range	
Measured	Measuring Range Range
Frequency	0.01 Hz to $200 \mathrm{kHz} \quad 1 \mathrm{~Hz}$ to 500
Rpm	0.01 rpm to 100,000 rpm 1 rpm to 100,000 rpm
Rps	0.001 rps to $2000 \mathrm{rps} \quad 0.1 \mathrm{rps}$ to $2,000 \mathrm{rps}$
Period	$5 \mu \mathrm{~s}$ to $50 \mathrm{~s} \quad 100 \mu \mathrm{~s}$ to 50 s
Duty (\%)	0\% to 100\% 10\% to 200\%
Power supply frequency (Hz)	$(50 \mathrm{~Hz}, 60 \mathrm{~Hz}, 400 \mathrm{~Hz}) \pm 20 \mathrm{~Hz} 1 \mathrm{~Hz}$ to 20 Hz
Pulse width (sec)	$2 \mu \mathrm{~s}$ to $50 \mathrm{~s} \quad 100 \mu \mathrm{~s}$ to 50 s
Pulse integration	Up to 2×10^{9} count $\quad 100 \times 10^{-2 \%} / \mathrm{div}$ to $500 \times 10^{21 / d i v}$
Speed	Measuring range same as frequency (units can be converted to
Auxiliary measurement functions	
Smoothing filter (Moving average)	A moving average is applied to smooth the observed stair-step shaped waveform.
	The moving average orders are based on a specified time (moving average order $=$ set time $\div 40 \mu \mathrm{~s}$). Filters are set at 0.1 ms to 1000 ms for reducing jitter and increasing resolution.
Pulse average function	A mode in which a specified number of pulses are measured together and averaged, with a specifiable number of pulses from 1 to 4096 . It has the same effect as the smoothing filter, but averaging is performed at the pulse interval. Even if the encoder interval is uneven, pulses can be measured together and averaged out.
Deceleration prediction	Automatically compensates for lack of information on encoder pulses occurring during deceleration (application of the brake) and calculates a deceleration curve.
Stop prediction (braking application)	A stop is inferred if no pulses are input for a period of time, and output is set to 0 . Up to 10 steps can be specified.
Offset observation function	You can set the observational center and zoom the surrounding fluctuations (supports fluctuation observation). Offset setting range $=$ (range 3 100)
Power generation electromagnetic pickup: Given output within 0.2 Vpp to 42 Vpp . Minimum sensitivity is 0.2 V (at $1: 1$) or more, connected with $1: 1$ cable. For types that require a power supply or terminal resistance, apply to the sensor side.	
Minimum input must be 0.2 Vpp or more. Measurement conditions: - During frequency/period measurement: $1 \mathrm{Vpp} / 1 \mu \mathrm{~s}$ square wave input (range $= \pm 10$ V, bandwidth $=$ FULL, and hysteresis $= \pm 1 \%$) - During DUTY/pulse width measurement: $1 \mathrm{Vpp} / 5 \mathrm{~ns}$ square wave input (range $= \pm 10 \mathrm{~V}$, bandwidth $=$ FULL, and hysteresis $= \pm 1 \%$) - During power supply frequency measurement: 90 Vrms sinewave input $($ range $=\mathrm{AC} 1000 \mathrm{~V}, \mathrm{BW}=100 \mathrm{kHz})$	
Measurement accuracy ${ }^{19}$	
- Frequency/Revolution/Velocity measurements	
Measurement accuracy \pm (0.05% of range + accuracy depends on the input waveform frequency)	
Accuracy depends on the	e 1 Hz to 2 kHz : $\quad 0.05 \%$ of input waveform frequency +1 mHz
input waveform frequency	2 kHz to $10 \mathrm{kHz} \quad 0.1 \%$ of input waveform frequency
	10 kHz to $20 \mathrm{kHz} \quad 0.3 \%$ of input waveform frequency
	20 kHz to $200 \mathrm{kHz} \quad 0.5 \%$ of input waveform frequency
- Period measurement	
Measurement accuracy	\pm (0.05% of range + accuracy depends on the input waveform interval)
Accuracy depends on the input waveform interval	
	$500 \mu \mathrm{~s}$ to $50 \mathrm{~s} \quad 0.05 \%$ of input waveform interval
	$100 \mu \mathrm{~s}$ to $500 \mu \mathrm{~s} \quad 0.1 \%$ of input waveform interval
	$50 \mu \mathrm{~s}$ to $100 \mu \mathrm{~s} \quad 0.3 \%$ of input waveform interval
	$5 \mu \mathrm{~s}$ to $50 \mu \mathrm{~s} \quad 0.5 \%$ of input waveform interval $+0.1 \mu \mathrm{~s}$
- Duty measurement	
	ut waveform frequency
	$\begin{array}{ll}0.1 \mathrm{~Hz} \text { to } 1 \mathrm{kHz} & \pm 0.1 \% \text { of } 100 \% \\ 1 \mathrm{kHz} \text { to } 10 \mathrm{kHz} & \pm 0.2 \% \text { of } 100 \%\end{array}$
	10 kHz to $50 \mathrm{kHz} \quad \pm 1.0 \%$ of 100%
	50 kHz to $100 \mathrm{kHz} \quad \pm 2.0 \%$ of 100%
	100 kHz to $200 \mathrm{kHz} \quad \pm 4.0 \%$ of 100%
- Pulse width measurement	
Measurement accuracy	\pm (0.05% of range + accuracy depends on input waveform pulse width)
Accuracy depends on input waveform pulse width	
	$500 \mu \mathrm{~s}$ to $100 \mathrm{~s} \quad 0.05 \%$ of input waveform pulse width
	$100 \mu \mathrm{~s}$ to $500 \mu \mathrm{~s} \quad 0.1 \%$ of input waveform pulse width
	$50 \mu \mathrm{~s}$ to $100 \mu \mathrm{~s} \quad 0.3 \%$ of input waveform pulse width
	$2 \mu \mathrm{~s}$ to $50 \mu \mathrm{~s} \quad 0.5 \%$ of input waveform pulse width $+0.1 \mu \mathrm{~s}$
- Power supply frequency measurement	
Measurement accuracy	Center frequency at $50,60 \mathrm{~Hz}$, accuracy of $\pm 0.03 \mathrm{~Hz}$, resolution of 0.01 Hz Center frequency at 400 Hz , accuracy of $\pm 0.03 \mathrm{~Hz}$, resolution of 0.01 Hz

Example of accessory combinations
 701933

Probe Power 4-output 701934 701931

Differential Probe
1000 Vrms
700924

- The actual voltage that can be used is the lowest of the specification for the module, cable, or adapter.

High-Speed 10 MS/s, 12-Bit Non-Isolation Module (Model 701255)
Input channels
Input couplings
Maximum sample rate
A/D conversion resolution
Input type
Frequency range
Input range
$(-3 \mathrm{~dB})^{* 1} \mathrm{DC}$, up to 3 MHz
(10:1) 500 mV to 2 kV range (in steps of 1, 2, or 5)
(1:1) 50 mV to 200 V range (in steps of 1,2 , or 5)
Effective measurement range 2 times the setting range
DC offset
$1 / 2$ the setting range
Maximum input voltage (1 kHz or less)
In combination with 701940 (10:1) 600 V (DC + ACpeak)
Direct input (1:1) 250 V (DC + ACpeak)
DC accuracy* ${ }^{1}$
Input impedance
Connector type
Input filter
Temperature coefficient
Gain $\pm\left(0.02 \%\right.$ of range) $/{ }^{\circ} \mathrm{C}$ (typical value)
Adaptive passive probe
(10:1) 701940
Acceleration/Voltage Module (with AAF) (Model 701275)

Input channels
Input type

Input couplings
Maximum sample rate
A/D conversion resolution
Input type
Frequency band $(-3 \mathrm{~dB})^{+1}$
AC coupling, Acceleration/voltage
Input range
For acceleration $(\pm 5 \mathrm{~V}=\times 1$ range) $\mathrm{X} 0.1-\times 1-\mathrm{X100}$ (in steps of 1,2 , or 5)
For voltage (10:1) 500 mV range to 1 kV range (in steps of 1,2 , or 5)
For voltage (1:1) 50 mV range to 100 V range (in steps of 1,2 , or 5)
■ This module's insulation is functional insulation. Even when using a probe, 42 V or higher input is not considered safe.
Effective measurement range
DC offset
2 times the setting range
Maximum input voltage (1 kHz or less) 42 V (DC + ACpeak)
Maximum allowable common mode voltage ${ }^{11}$
Accuracy ${ }^{11}$
Input impedance
Connector type
Input filters
Anti-aliasing filter (AAF)
Cutoff frequency (when fs $=50 \mathrm{~Hz}$ to 100 kHz , fs $\leq 50 \mathrm{~Hz}$, fc is fixed to 20 Hz) fc (cutoff frequency) $=$ fs (sampling frequency) $\times 40 \%$
fc automatically linked with the sampling frequency.
Cutoff characteristics -65 dB at $2 \times \mathrm{fc}$ (typical)
Temperature coefficient (for voltage) (excluding when filter = AUTO)
Zero point $\pm\left(0.02 \%\right.$ of range) $/{ }^{\circ} \mathrm{C}$ (typical value)
Gain $\pm\left(0.02 \%\right.$ of range) $/{ }^{\circ} \mathrm{C}$ (typical value)
Acceleration sensor bias (constant current drive)
Constant current drive $=4 \mathrm{~mA} \pm 10 \%$, voltage 22 V
Examples of compatible acceleration sensors:
Built-in amp type: Kistler Instruments Corp.,
Piezotron®; PCB Piezotronics Inc., ICP®; Endevco Corp., Isotron2®
Something that supports acceleration sensor and bias is $4 \mathrm{~mA} / 22 \mathrm{~V}$.

- Piezotron is a registered trademark of Kistler Instrument Corp. ICP is a registered trademark of PCB Piezotronics Inc. Isotron2 is a registered trademark of Endevco Corp. Sensor usage notes: Sensors are sensitive to physical shock and heat. If shocks or temperature changes occur that are outside of the standard operating conditions, measurement may not be possible for several minutes. (10:1 probe) 701940/700929 (1:1 cable) 366926

Strain Module (NDIS) (Model 701270)
Input channels
Input types
Automatic balancing
Automatic balancing range
Bridge voltages
Gauge resistances
Gauge rate
A/D resolution
Maximum sample rate
Frequency range $(-3 \mathrm{~dB})^{* 1}$
DC accuracy* ${ }^{*}$
Measurement range/measur
DC bridge input (automatic balancing), balanced differential input, DC amplifier (floating)
Electronic auto-balance
$\pm 10,000 \Omega$ STR (1 gauge method)
Select $2 \mathrm{~V}, 5 \mathrm{~V}$, or 10 V
120Ω to 1000Ω (bridge voltage 2 V)
350Ω to 1000Ω (bridge voltage $2 \mathrm{~V}, 5 \mathrm{~V}, 10 \mathrm{~V}$)
1.90 to 2.20 (variable in 0.01 steps)

16 bits (48,000 LSB/ \pm FS: Upper $=+$ FS and Lower $=-$ FS $)$
$100 \mathrm{kS} / \mathrm{s}$
DC, up to 20 kHz
\pm (0.5% of FS $+5 \mu$ STR)
ble range
Measurement range (FS) Measurable range (_FS to +FS)
500μ STR $\quad-500 \mu$ STR to 500μ STR
1000μ STR $\quad-1000 \mu$ STR to 1000μ STR
2000μ STR $\quad-2000 \mu$ STR to 2000μ STR
5000μ STR $\quad-5000 \mu$ STR to 5000μ STRR
$10,000 \mu$ STR $\quad-10,000 \mu$ STR to $10,000 \mu$ STR
$20,000 \mu$ STR $\quad-20,000 \mu$ STR to $20,000 \mu$ STR
mV / V range support $\quad \mathrm{mV} / \mathrm{V}$ range $=0.5 \times(\mu$ STR range $/ 1000)$
Maximum allowable input voltage (1 kHz or less)
10 V (DC + ACpeak)
Maximum allowable common mode voltage
42 V (DC+ACpeak) (CAT I \& CAT II, 30 VrmsI$)$
Temperature coefficient Zero point $\pm 5 \mu \mathrm{STR} /{ }^{\circ} \mathrm{C}$ (typical value)
Gain $\pm(0.02 \%$ of FS$) /{ }^{\circ} \mathrm{C}$ (typical value)
Internal filter
OFF, $1 \mathrm{kHz}, 100 \mathrm{~Hz}, 10 \mathrm{~Hz}$
Input connector
NDIS standard
Accessory (set of solderable connector shells)
NDIS connector (A100JC), 1 unit
Recommended bridge head (NDIS type) (sold separately)
$701955(120 \Omega)$ (comes with 5 m cable)
701956 (350Ω) (comes with 5 m cable)

Strain Module (supports DSUB shunt cal) (Model 701271)

Input channels Input types

2
DC bridge input (automatic balancing), balanced
differential input, DC amplifier (floating)
Automatic balancing method Electronic auto-balance
Automatic balancing range $\pm 10,000 \mu$ STR (1 gauge method)
Bridge voltages
Gauge resistances $\quad 120 \Omega$ to 1000Ω (bridge voltage 2 V)
Gauge rate $\quad 1.90$ to 2.20 (can be set in 0.01 steps)
A/D resolution
Maximum sample rate
Frequency range $\left(_3 \mathrm{~dB}\right)^{* 1}$
DC accuracy ${ }^{11}$
DC accuracy $\quad \pm(0.5 \%$ of FS
Measurement range/measurable range
Measurement range (FS) Measurable range (_FS to +FS)
500μ STR $\quad-500 \mu$ STR to 500μ STR
1000μ STR $\quad-1000 \mu$ STR to 1000μ STR
2000μ STR $\quad-2000 \mu$ STR to 2000μ STR
$\begin{array}{ll}2000 \mu \text { STR } & -2000 \mu \text { STR to } 2000 \mu \text { STR } \\ 5000 \mu \text { STR } & -5000 \mu \text { STR to } 5000 \mu \text { STR }\end{array}$
$10,000 \mu$ STR $\quad-10,000 \mu$ STR to $10,000 \mu$ STR
$20,000 \mu$ STR $\quad-20,000 \mu$ STR to $20,000 \mu$ STR
mV / V range support
mV / V range $=0.5 \times(\mu \mathrm{STR}$ range $/ 1000)$
Maximum allowable input voltage (1 kHz or less)
10 V (DC + ACpeak)
Maximum allowable common mode voltage
42 V (DC+ACpeak) (CAT I \& CAT II, 30 Vrms)
Temperature coefficient Zero point $\pm 5 \times$ STR $/{ }^{\circ} \mathrm{C}$ (typical value)
Gain $\pm(0.02 \%$ of FS$) /{ }^{\circ} \mathrm{C}$ (typical value)
Internal filter OFF, $1 \mathrm{kHz}, 100 \mathrm{~Hz}, 10 \mathrm{~Hz}$
Input connector
OFF, $1 \mathrm{kHz}, 100 \mathrm{~Hz}$, 10
DSUB
DSUB connector, 1 unit
Accessory (set of solderable connector shells) DSUB connector, 1 unit
Recommended bridge head (supports DSUB shunt CAL) (sold separately)
701957 (120 Ω) (with 5 m cable)
$701958(350 \Omega)$ (with 5 m cable)

Module Accessories

Universal (Voltage/Temperature) Modules (701261/701262)
Input channels
Input signals
AAF (anti-aliasing filter)
Input couplings
Input types
$\begin{array}{ll}\text { Input types } & \text { TC (thermocouple), } \\ \text { Maximum samp } & \text { Isolated unbalanced }\end{array}$
Data updating rateTemperage $100 \mathrm{kS} / \mathrm{s}$
A/D conversion resolution Voltage, 16 bits (24,000 LSB/range), temperature, $0.1^{\circ} \mathrm{C}$ resolution
Frequency range $(-3 \mathrm{~dB})^{* 1}$ Voltage DC, up to 40 kHz Temperature DC, up to 100 Hz
Input range Voltage (1:1) 50 mV to 200 V range (10 div display, steps of 1 , 2, or 5) Temperature K, E, J, T, L, U, N, R, S, B, W, iron doped gold/chromel
Effective measurement range (voltage) 2 times the setting range
DC offset (voltage)
$1 / 2$ the setting range
DC accuracy ${ }^{-1}$ (voltage) $\pm(0.25 \%$ of range)
Temperature measured range/accuracy* ${ }^{1}$
(Reference junction temperature compensation accuracy is not included)

Type	Measured range	Accuracy
K	$-200^{\circ} \mathrm{C}$ to $1300^{\circ} \mathrm{C}$	$\pm\left(0.1 \%\right.$ of reading $\left.+1.5^{\circ} \mathrm{C}\right)$
E	$-200^{\circ} \mathrm{C}$ to $800^{\circ} \mathrm{C}$	However, for $-200^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$:
J	$-200^{\circ} \mathrm{C}$ to $1100^{\circ} \mathrm{C}$	$\pm\left(0.2 \%\right.$ of reading $\left.+1.5^{\circ} \mathrm{C}\right)$
T	$-200^{\circ} \mathrm{C}$ to $400^{\circ} \mathrm{C}$	
L	$-200^{\circ} \mathrm{C}$ to $900^{\circ} \mathrm{C}$	
U	$-200^{\circ} \mathrm{C}$ to $400^{\circ} \mathrm{C}$	
N	$0^{\circ} \mathrm{C}$ to $1300^{\circ} \mathrm{C}$	
R, S	$0^{\circ} \mathrm{C}$ to $1700^{\circ} \mathrm{C}$	$\pm\left(0.1 \%\right.$ of reading $\left.+3^{\circ} \mathrm{C}\right)$ However, for $0^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}: \pm 8^{\circ} \mathrm{C}$ $200^{\circ} \mathrm{C}$ to $800^{\circ} \mathrm{C}: \pm 5^{\circ} \mathrm{C}$
B	$0^{\circ} \mathrm{C}$ to $1800^{\circ} \mathrm{C}$	$\pm\left(0.1 \%\right.$ of reading $\left.+2^{\circ} \mathrm{C}\right)$ However, for $400^{\circ} \mathrm{C}$ to $700^{\circ} \mathrm{C}: \pm 8^{\circ} \mathrm{C}$ The effective range is $400^{\circ} \mathrm{C}$ to $1800^{\circ} \mathrm{C}$
W	$0^{\circ} \mathrm{C}$ to $2300^{\circ} \mathrm{C}$	$\pm\left(0.1 \%\right.$ of reading $\left.+3^{\circ} \mathrm{C}\right)$
Gold/c	mel 0 K to 300 K	$\begin{aligned} & 0 \text { to } 50 \mathrm{~K}: \pm 4 \mathrm{~K} \\ & 50 \text { to } 300 \mathrm{~K}: \pm 2.5 \mathrm{~K} \end{aligned}$

$\begin{array}{ll}\text { Maximum input voltage (1 kHz or less) } & \begin{array}{l}42 \mathrm{~V}(\mathrm{DC}+\mathrm{ACpeak}) \\ \\ \text { Since the input connector is of a binding post type, when the }\end{array}\end{array}$ following safety standards are met, it is possible to touch the metal part of the connector. Therefore for safety reasons, the maximum value is 42 V (DC+ACpeak).
150 V (DC+ACpeak): Input section maximum allowable voltage (maximum value at which the input circuit will not be damaged)
Maximum allowable common mode voltage (1 kHz or less)
42 V (DC+ACpeak) (CAT I \& CAT II, 30 Vrms)
Input connector
Input impedance Input filters

Binding post
Approximately $1 \mathrm{M} \Omega$
Voltage
Temperature except AUTO

AAF (anti-aliasing filter)

when fs $=50 \mathrm{~Hz}$ to 100 kHz , fs $<=50 \mathrm{~Hz}$ or less is
fixed to fc $=20 \mathrm{~Hz} 701262$ only
Cutoff frequency $\mathrm{fc}=\mathrm{fs}$ (sampling frequency) $\times 40 \%$
fc is automatically linked with the sampling frequency. Cutoff characteristics: -65 dB at 2 Xfc (typical)
Temperature coefficient (for voltage) Except when Filter = AUTO
Zero point $\pm\left(0.01 \%\right.$ of range) $/{ }^{\circ} \mathrm{C}$ (typical value) Gain $\pm\left(0.02 \%\right.$ of range) $/{ }^{\circ} \mathrm{C}$ (typical value)
Compatable cable 366961 (banana-to-aligator clip, 1:1)

Temperature/High-Precision Voltage Module (701265)

Input channels	2
Input couplings	TC (thermocouple), DC, GND
Input type	Isolated unbalanced

Input type Isolated unbalanced
Applicable sensors (Input couplings: TC) K, E, J, T, L, U, N, R, S, B, W, iron doped gold/chromel
Data updating rate
500 Hz
Frequency range $(-3 \mathrm{~dB})^{* 1} \quad \mathrm{DC}$, up to 100 Hz
Voltage accuracy ${ }^{41}$ (in voltage mode) $\pm(0.08 \%$ of range $+2 \mu \mathrm{~V}$)
Temperature measurement range/accuracy* ${ }^{1}$
(Reference junction temperature compensation accuracy is not included)

Type	Measured Range	Accuracy
K	$-200^{\circ} \mathrm{C}$ to $1300^{\circ} \mathrm{C}$	$\pm\left(0.1 \%\right.$ of reading $\left.+1.5^{\circ} \mathrm{C}\right)$
E	$-200^{\circ} \mathrm{C}$ to $800^{\circ} \mathrm{C}$	However, for $-200^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$:
J	$-200^{\circ} \mathrm{C}$ to $1100^{\circ} \mathrm{C}$	$\pm\left(0.2 \%\right.$ of reading $\left.+1.5^{\circ} \mathrm{C}\right)$
T	$-200^{\circ} \mathrm{C}$ to $400^{\circ} \mathrm{C}$	
L	$-200^{\circ} \mathrm{C}$ to $900^{\circ} \mathrm{C}$	
U	$-200^{\circ} \mathrm{C}$ to $400^{\circ} \mathrm{C}$	
N	$0^{\circ} \mathrm{C}$ to $1300^{\circ} \mathrm{C}$	
R, S	$0^{\circ} \mathrm{C}$ to $1700^{\circ} \mathrm{C}$	$\begin{aligned} & \pm\left(0.1 \% \text { of reading }+3^{\circ} \mathrm{C}\right) \\ & \text { However, for } 0^{\circ} \mathrm{C} \text { to } 200^{\circ} \mathrm{C}: 8^{\circ} \mathrm{C} \\ & \text { However, for } 200^{\circ} \mathrm{C} \text { to } 800^{\circ} \mathrm{C}: \pm 5^{\circ} \mathrm{C} \end{aligned}$
B	$0^{\circ} \mathrm{C}$ to $1800^{\circ} \mathrm{C}$	$\begin{aligned} & \pm\left(0.1 \% \text { of reading }+2^{\circ} \mathrm{C}\right) \\ & \text { However, for } 400^{\circ} \mathrm{C} \text { to } 700^{\circ} \mathrm{C}: \pm 8^{\circ} \mathrm{C} \\ & \text { The effective range is } 400^{\circ} \mathrm{Co} \text { t } 1800^{\circ} \mathrm{C} \end{aligned}$
W	$0^{\circ} \mathrm{C}$ to $2300^{\circ} \mathrm{C}$	$\pm\left(0.1 \%\right.$ of reading $\left.+3^{\circ} \mathrm{C}\right)$
Iron doped gold/chromel 0 to 300 K		$\begin{aligned} & 0 \text { to } 50 \mathrm{~K}: \pm 4 \mathrm{~K} \\ & 50 \text { to } 300 \mathrm{~K}: \pm 2.5 \mathrm{~K} \end{aligned}$
42 V (DC+ACpeak) (CAT I \& CAT II, 30 VrmsI) 1 mV to 100 V range (in $1 / 2 / 5$ steps)		
Binding post		
Approximately $1 \mathrm{M} \Omega$		
tage)		
$\pm\left(0.01 \%\right.$ of range) $/{ }^{\circ} \mathrm{C}+0.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ (typical value)		
$\pm\left(0.02 \%\right.$ of range)/ ${ }^{\circ} \mathrm{C}$ (typical value)		

Logic Probe Accessories and Carrying Case

Maximum Input Voltage/Maximum Allowable Common Mode Voltage

See Specifications of Plug-in Modules
In combination with 700929

Direct input

(with a cable which doesn't comply
with the safety standard)

\triangle Warning

Do not exceed the maximum input voltage, withstand voltage, or surge current. In order to prevent electric shock, be sure to ground the main unit. In order to prevent electric shock, be sure to tighten the module's screws. Otherwise, electrical protective functions and mechanical protective functions will not be effective.

Logic Probe (702911: $1 \mathrm{~m}, 702912: 3 \mathrm{~m}$)

Number of inputs
Input types
Maximum input voltage
Response time
Input impedance
Threshold level
Input method
8
Non-isolated (common ground for all bits, main unit logic inputs and bits share common ground) ± 35 V
$3 \mu \mathrm{~s}$ or less
$10 \mathrm{k} \Omega$ or higher
Approximately 1.4 V
TTL level or contact input (switchable)

High-Speed Logic Probe (700986)

Number of inputs
Input types
8
Non-isolated (common ground for all bits; logic module and bits share common ground)
Maximum input voltage (1 kHz or less) (between probe tip and case ground)
42 V (DC +ACpeak) (CAT I and II, 30 Vrms)
Response time Input impedance Threshold level
1μ S or less
Approximately $100 \mathrm{k} \Omega$
Approximately 1.4 V

Isolated Logic Probe (700987)

Number of inputs Input types
Input connector
Input switching capability Applicable input ranges

Threshold levels
Response times

Maximum allowable in-phase voltage
Maximum allowable voliage between bits
Input impedance
$\begin{array}{ll}\text { Maximum input voltage (} 1 \mathrm{kHz} \text { or less) } & \left.\begin{array}{l}\text { AC input } 20 \mathrm{~ms} \text { or less } \\ \text { (between } \mathrm{H} \text { and } \mathrm{L} \text { of each bit) } 250 \mathrm{Vrms} \text { (CAT I and II) }\end{array}\right) \text { (Cater }\end{array}$
8
Isolated (all individual bits are isolated)
Safety connector (banana plug) $\times 8$
AC/DC input switching for each bit
DC input H / L detection for 10 V DC to 250 V DC
AC input H / L detection $(50 / 60 \mathrm{~Hz}$) for 80 V AC to 250 V AC
DC input 6 V DC $\pm 50 \%$
DC input $6 \mathrm{~V} \mathrm{DC} \pm 50 \%$
AC input $50 \mathrm{~V} \mathrm{AC} \pm 50 \%$
AC input $50 \mathrm{~V} \mathrm{AC} \pm 50 \%$
DC input 1 ms or less
AC input 20 ms or less

50 Vms (CAT and II)
Approximately $100 \mathrm{k} \Omega$

