1.3 Key Specifications and Benefits

The **SIGNAL RECOVERY** Model 7225BFP is a cost-effective DSP lock-in amplifier suitable for many applications, and offers:-

■ Frequency range: 0.001 Hz to 120 kHz

■ Voltage sensitivity: 2 nV to 1 V full-scale

■ Current input mode sensitivities: 2 fA to 1 μA full-scale

2 fA to 10 nA full-scale

- Line frequency rejection filter
- Dual phase demodulator with X-Y and R- θ outputs
- Very low phase noise of $< 0.0001^{\circ}$ rms
- 5-digit output readings
- Direct Digital Synthesizer (DDS) oscillator with variable output amplitude and frequency
- Oscillator frequency and amplitude sweep generator via computer control
- Output time constant: 10 µs to 100 ks
- 8-bit programmable digital output port for system control
- Two external ADCs, two external DACs
- Full range of auto-modes
- Standard IEEE-488 and RS232 interfaces with RS232 daisy-chain capability
- Dual back-lit liquid crystal display (LCD) with variable contrast control
- 32768 point curve storage buffer

Specifications

Appendix A

Measurement Modes

Harmonic $nF, n \le 32F$

Noise Measures noise in a given bandwidth centered on

frequency F

Displays

Two LED backlit, two-line, 16-character alphanumeric dot-matrix LCDs giving digital indication of current instrument set-up and output readings. Edge indicating analog panel meter. Menu system with dynamic key function allocation.

Signal Channel

Voltage Inputs

Modes A only or Differential (A-B)
Full-scale Sensitivity 2 nV to 1 V in a 1-2-5 sequence

Dynamic Reserve > 100 dB

Impedance

FET Device $10 \text{ M}\Omega \text{ // } 30 \text{ pF}$ Bipolar Device $10 \text{ k}\Omega \text{ // } 30 \text{ pF}$

Voltage Noise

FET Device $5 \text{ nV/}\sqrt{\text{Hz}}$ at 1 kHz Bipolar Device $2 \text{ nV/}\sqrt{\text{Hz}}$ at 1 kHz

CMRR > 100 dB at 1 kHz degrading by 6 dB/octave

Frequency Response 0.001 Hz to 120 kHz Gain Accuracy 0.5 % typ (full bandwidth)

Distortion -90 dB THD (60 dB AC Gain, 1 kHz)

Line Filter attenuates 50, 60, 100, 120 Hz

Grounding BNC shields can be grounded or floated via 1 $k\Omega$

to ground

Current Input

Mode Low Noise or Wide Bandwidth

Full-scale Sensitivity

Low Noise 2 fA to 10 nA in a 1-2-5 sequence Wide Bandwidth 2 fA to 1 μ A in a 1-2-5 sequence Dynamic Reserve > 100 dB (with no signal filters)

Frequency Response

Low Noise -3 dB at 500 Hz Wide Bandwidth -3 dB at 50 kHz

Impedance

Low Noise $< 2.5 \text{ k}\Omega$ at 100 HzWide Bandwidth $< 250 \Omega$ at 1 kHz

Noise

Low Noise 13 fA/ $\sqrt{\text{Hz}}$ at 500 Hz Wide Bandwidth 130 fA/ $\sqrt{\text{Hz}}$ at 1 kHz

Gain Accuracy (midband)

Low Noise $\leq 0.6 \%$ typ Wide Bandwidth $\leq 0.6 \%$ typ

Line Filter attenuates 50, 60, 100, 120 Hz

Grounding BNC shield can be grounded or floated via 1 k Ω

to ground

Reference Channel

TTL Input (REF TTL Mode)

Frequency Range 1 mHz to 120 kHz

Analog Input (EXT REF Mode - factory default)

Impedance $1 \text{ M}\Omega // 30 \text{ pF}$

Sinusoidal Input

Level 1.0 V rms**
Frequency Range 1 Hz to 120 kHz

Squarewave Input

Level 100 mV rms**
Frequency Range 300 mHz to 120 kHz

Phase

Set Resolution 0.01° increments

Accuracy 0.5° typ

Noise at 100 ms TC, 12 dB/octave

Internal Reference < 0.0001° rms External Reference < 0.01° rms at 1 kHz

Orthogonality $90^{\circ} \pm 0.0001^{\circ}$

Drift < 0.01°/°C below 10 kHz

< 0.1°/°C above 10 kHz

^{**}Note: Lower levels can be used with the analog input at the expense of increased phase errors.

Acquisition Time

Internal Reference instantaneous acquisition

External Reference 2 cycles + 50 ms

Reference Frequency Meter Accuracy

120 kHz > F > 40 kHz $\pm 4 \text{ Hz}$

40 kHz > F > 400 Hz $\pm 0.8 \text{ Hz}$ at F = 40 kHz improving to

 $\pm 0.008~Hz$ at F = 400~Hz

400 Hz > F > 1 mHz $\pm 0.040 \text{ Hz}$ at F = 400 Hz improving to

better than ± 0.0001 Hz at F = 1 mHz

Demodulator and Output Processing

Description

 2×18 -bit ADCs driving two DSP elements managed by a powerful 68000-series host processor

Output Zero Stability

Digital Outputs No zero drift on all settings
Displays No zero drift on all settings

Analog Outputs < 5 ppm/°C

Harmonic Rejection -90 dB

Time Constants

Digital Outputs 5 ms to 100 ks in a 1-2-5 sequence Fast Outputs 10 µs to 640 µs in a binary sequence

Roll-off 6, 12, 18 and 24 dB/octave

Synchronous Filter Operation Available for F < 10 Hz

Offset Auto and Manual on X and Y: $\pm 300 \%$ FS

Oscillator

Frequency

Range 0.001 Hz to 120 kHz

Setting Resolution 0.001 Hz

Absolute Accuracy $25 \text{ ppm} + 30 \text{ } \mu\text{Hz}$

Distortion (THD) -80 dB at 1 kHz

Amplitude

Range 1 mV to 5 V

Setting Resolution

1 mV to 500 mV 1 mV 501 mV to 2 V 4 mV 2.001 V to 5 V 10 mV Accuracy

 $\begin{array}{ccc} 0.001 \ \text{Hz to } 60 \ \text{kHz} & \pm 0.3 \ \% \\ 60 \ \text{kHz to } 120 \ \text{kHz} & \pm 0.5 \ \% \\ \text{Stability} & 50 \ \text{ppm/}^{\circ}\text{C} \end{array}$

Output Impedance 50Ω

Auxiliary Inputs ADC1 & 2

 $\begin{array}{ll} \text{Maximum Input} & \pm 10 \text{ V} \\ \text{Resolution} & 1 \text{ mV} \\ \text{Accuracy} & \pm 20 \text{ mV} \end{array}$

Input Impedance $1 \text{ M}\Omega // 30 \text{ pF}$

Sample Rate

ADC 1 only
ADC 1 and 2

Trigger Mode

Trigger input

40 kHz max

13 kHz max

Int, ext or burst

TTL compatible

Outputs

CH1 CH2 Outputs

Function X, Y, R, θ , Noise and aux functions

 $\begin{array}{ll} \text{Amplitude} & \pm 10 \text{ V} \\ \text{Impedance} & 1 \text{ k}\Omega \end{array}$

Fast X and Fast Y Outputs

Time Constant $\leq 640 \mu s$ Amplitude $\pm 10 V$

Update Rate 166 kHz nominal

Output Impedance $1 \text{ k}\Omega$

Signal Monitor

 $\begin{array}{ll} \mbox{Amplitude} & \pm 10 \ \mbox{V FS} \\ \mbox{Impedance} & 1 \ \mbox{k} \mbox{\Omega} \end{array}$

Aux D/A Output 1, 2

 $\begin{array}{ll} \text{Maximum Output} & \pm 10 \text{ V} \\ \text{Resolution} & 1 \text{ mV} \\ \text{Accuracy} & \pm 10 \text{ mV} \\ \text{Output Impedance} & 1 \text{ k}\Omega \end{array}$

8-bit Digital Output 8 TTL compatible lines that can be independently

set high or low to activate external equipment

Power - Low Voltage $\pm 15 \text{ V}$ at 100 mA rear panel DIN connector for

powering **SIGNAL RECOVERY** preamplifiers

Data Storage

Data Buffer

Size 32k 16-bit data points, may be organized as

 1×32 k, 2×16 k, 3×10.6 k, 4×8 k, etc.

Max Storage Rate

From LIA up to 800 16-bit values per second up to 40,000 16-bit values per second

Interfaces

RS232, IEEE-488. A auxiliary RS232 port is provided to allow "daisy-chain" connection and control of multiple units from a single RS232 computer port.

Power Requirements

Voltage 110/120/220/240 VAC

Frequency 50/60 Hz Power < 40 VA

General

Dimensions

Width 432 mm (17 ") Depth 415 mm (16.4 ")

Height

With feet 74 mm (2.9 ")
Without feet 60 mm (2.4 ")

Weight 7.4 kg (16.3 lb)