Specifications

Appendix A

General

Dual-phase analog lock-in amplifier operating over a reference frequency range of 5 Hz to 20 kHz , but also available calibrated for use at one user-specified spot frequency in the range 20 kHz to 100 kHz

The model 5105 is a complete tested module and the model 5106 is tested PCB assembly. Both units share common specifications.

Measurement Modes

The instrument can simultaneously measure these outputs:

X	In-phase
Y	Quadrature
R	Magnitude
θ	Phase Angle

Signal Channel Input

Modes
Grounding
Full-scale Sensitivity
Max. Dynamic Reserve
Impedance
Maximum Safe Input
Voltage Noise
C.M.R.R.
Frequency Response
Gain Accuracy
Gain Stability

Single-ended or pseudo-differential
Input signal ground can be grounded or floated via $1 \mathrm{k} \Omega$ to ground using internal jumper
$10 \mu \mathrm{~V}$ to 1 V in a $1-3.16-10$ sequence
(10 dB steps)
$>80 \mathrm{~dB}$
$10 \mathrm{M} \Omega / / 30 \mathrm{pF}$
20 V pk-pk
$<30 \mathrm{nV} / \sqrt{ } \mathrm{Hz} @ 1 \mathrm{kHz}$
>40 dB@1kHz
5 Hz to 100 kHz
2% typical for digital outputs; 6\%
typical for analog outputs
$200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ typical

Signal Channel Filters

High-pass Signal Channel Filter	
-3 dB frequency	$1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$ or 1 kHz
Low-pass Signal Channel Filter	
-3 dB frequency	$50 \mathrm{~Hz}, 500 \mathrm{~Hz}, 5 \mathrm{kHz}$ or 50 kHz or, by jumper selection, $220 \mathrm{~Hz}, 2.2 \mathrm{kHz}, 22 \mathrm{kHz}$ or 220 kHz Frequency Accuracy
	$\pm 10 \%$

Reference Channel

Mode
Frequency Range
Analog Impedance
Reference harmonic
Phase Set Resolution
Phase Set Accuracy
Phase Noise
Phase Drift
Orthogonality
Acquisition Time

TTL or Analog input
5 Hz to 20 kHz or spot frequencies to 100 kHz
$1 \mathrm{M} \Omega / / 30 \mathrm{pF}$
F only
0.1° increments
$\pm 1^{\circ}$
$\leq 0.015^{\circ} \mathrm{rms} @ 1 \mathrm{kHz}, 100 \mathrm{~ms}, 12 \mathrm{~dB} \mathrm{TC}$
$\leq 0.007^{\circ} \mathrm{rms}$ @ $10 \mathrm{kHz}, 100 \mathrm{~ms}, 12 \mathrm{~dB} \mathrm{TC}$
$<0.05^{\circ} /{ }^{\circ} \mathrm{C}$
$\pm 1^{\circ}$
$1 \mathrm{~s}+2$ cycles max

Demodulator and Output Processing

Mode
Zero stability/Dynamic Reserve

Squarewave switching demodulator + HP/LP filters

Zero stability/Dynamic Reserve

Setting	Dynamic Reserve for signals within filter pass-band	Stability
High Reserve	46 dB	$500 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Normal	26 dB	$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
High Stability	6 dB	$40 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$

Output Filters

Time Constants	
\quad Analog and Digital Outputs	
Fast Mode	$300 \mu \mathrm{~s}, 1 \mathrm{~ms}, 3 \mathrm{~ms}$ or 10 ms
	$(316 \mu \mathrm{~V}$ to 1 V FS sensitivity $)$
\quad Normal Mode	$30 \mathrm{~ms}, 100 \mathrm{~ms}, 300 \mathrm{~ms}$ or 1 s
Digital Outputs only	3 s and 10 s
Accuracy	$\pm 10 \%$
Slope	$6 \mathrm{~dB} /$ octave or $12 \mathrm{~dB} /$ octave
Offsets	$\pm 20 \%$ full-scale, X and/or Y

Outputs

Main Analog (X and Y) Outputs
Amplitude
Impedance
Signal Monitor
Reference Output
Waveform
Impedance
± 1 V FS
$1 \mathrm{k} \Omega$
10 V pk-pk maximum
0 to 5 V rectangular wave
TTL-compatible

Interface

Type
RS232 via 9-pin D type plug, configured as a DTE device. Two ports are provided allowing up to fifteen model 5105/5106 or compatible instruments to be controlled from a single computer port
Parameters (fixed)
4800 baud, no parity, 8 data bits and 1 stop bit
Addressing
Rear panel rotary switch assigns a unique address to each instrument
Controls
Sensitivity, High and Low-Pass Filter settings, Dynamic Reserve,
Reference Phase, Time Constant and Slope can all be set and read via RS232
command
Auto Functions
Auto-Phase and Auto-Offset
Data Transfer Rate
6-8 readings per second typical
Outputs
X and $Y \quad$ Max count $= \pm 1200(\pm 1000=F S)$
Magnitude \quad Max count $=1200(1000=F S)$
Signal Phase Max count $= \pm 1800$, corresponding to $\pm 180^{\circ}$
Ref Frequency Response in millihertz

Software \& RS232 Cable

A full applications package for PC compatible computer providing access to all instrument controls and outputs, and supporting up to 16 units, is supplied with each instrument. In addition, a LabVIEW driver software suitable for versions 4.01 and later of LabVIEW is available by download from our website at www.signalrecovery.com

The instrument is also compatible with the SIGNAL RECOVERY Acquire Lock-in Amplifier Applications software. A free demonstration version can be downloaded from the above website.

2 meter null-modem cable suitable for connecting the instrument to a 9-pin D-type RS232 plug on a PC computer also included.

Power Requirements

+18 V DC unregulated @ $300 \mathrm{~mA}-18 \mathrm{~V}$ DC unregulated @ 80 mA A separate power supply (model PS0108) suitable for 110 V 60 Hz or 230 V 50 Hz operation is supplied with each model 5105 and available as an optional extra for each model 5106 instrument

Dimensions

Model 5105

Width
Depth
Height
Weight
Model 5106
Dimensions
Width
Depth
Height

81/4" (209 mm)
$10^{1 / 2} 2^{\prime \prime}(266 \mathrm{~mm})$
$3^{1 ⁄ 2} 2^{\prime \prime}(85 \mathrm{~mm})$
$5 \mathrm{lb}(2.3 \mathrm{~kg})$
$6^{1 / 2 "}$ (167 mm)
91/4" (233 mm)
$11 / 22^{\prime \prime}(40 \mathrm{~mm})$

