9. SPECIFICATIONS # 9. SPECIFICATIONS # (1) Electrical Performance Table 9 - 1 Specifications of R5372/5373/5372P/5373P | Input | INPUT A | | INPUT B | |---------------------------|--|---|--| | Frequency | 10 mHz to 10 MHz
(DC coupling)
10 Hz to 10 MHz
(AC coupling) | 10 MHz to 550 MHz | 500 MHz to 18 GHz
(R5372/P)
500 MHz to 27 GHz
(R5373/P) | | Input
impedance | Approx. 1 M $\Omega/60$ pF or less Approx. 50Ω | | Approx. 50Ω | | Input
sensitivity | 25 mVrms | 25 mVrms | -20 dBm (500 MHz
to 18 GHz)
-15 dBm (18 GHz
to 27 GHz) | | Input
attenuation | 0 dB, 20 dB selectable
0 dB or 20 dB | ANS (ON, OFF) | AUTO on approx. 20dB | | Maximum input level | 500 mVrms/ATT. 0 dB
5 Vrms/ATT. 20 dB | 500 mVrms/ANS OFF
5 Vrms/ANS ON | 0 dBm (ATT: AUTO)
+10 dBm (ATT: 20dB) | | Damaging
input | 5 Vrms (1 MHz to 10 MHz)
10 Vrms (400 Hz to 1 MHz)
100 Vrms (DC to 400 Hz) | 6 Vrms | +10 dBm (ATT: AUTO)
+20dBm (ATT: 20dB) | | Input
coupling
mode | DC/AC | AC | AC | | Trigger
level | Approx1 V to +1 V continuously variable (-10 V to +10 V/ATT. 20 dB) | | | | Resolution/
gate time | See Figure 9-1 | Decade switching
from 10 MHz/0.1 µs
to 0.1 Hz/ 10 s | Decade switching
from 10 MHz/
0.1 µs to 0.1 Hz/
10 s | Table 9 - 1 Specifications of R5372/5373/5372P/5373P (Cont'd) | Input
Item | INPUT A | | INPUT B | |-------------------------|--|---------------------------------|---| | Measurement
accuracy | <pre>±(trigger error/number of periods) ±1 count ±time base accuracy (See Figure 9-1 for frequency.)</pre> | ±1 count ±time base
accuracy | <pre>±1 count ±time base accuracy; Residual stabili- ty:±1/10x frequ- ency[GHz] count rms</pre> | | Measuring
method | Reciprocal scheme | Direct count method | Direct counting
made after
heterodyne con-
version by digital
TRAHET system | | Input
connector | BNC type | | N type (R5372/P)
SMA type convert-
ible into N type
(R5373/P) | (Note) Trigger error: Within $\pm 0.3\%$ of sine wave input at signal-to-noise ratio of 40 dB or more Figure 9 - 1 Measuring Time, Resolution, and Number of Periods Versus Input Frequency #### 9. SPECIFICATIONS Totalize [INPUT A (up to 10 MHz)] Counting range : DC to 10 MHz Counting capacity: 0 to 10 10 10 -1 Pulse width measurement [INPUT A (up to 10 MHz)] (R5372P/5373P only) Measuring range : 50 ns to 1 s Resolution for 10-pulse average measurement: 10 ns Unit of display : µs (fixed decimal point) Measurement accuracy: ($\pm trigger error/\sqrt{10}$) ± 1 count $\pm time$ base accuracy (Note) Trigger error: $\pm \frac{0.0025}{\text{Signal slope (V/}\mu\text{s})}$ $\pm \frac{2 \times (\text{peak voltage of noise})}{\text{Signal slope (V/µs)}}$ [µs] Measurement mode [INPUT B] AUTO : Acquisition time: Approx. 300 ms (From resetting to starting of counting) FM tolerance: Max. 10 MHz p-p MANUAL : Fixed band determined by frequency key setting. No acquisition operation is made. Bandwidth (FM tolerance): ± 125 MHz or more(At 1.4 GHz to 18/27 GHz) ±25 MHz or more (At 0.5 GHz to 1.4 GHz) Pulse-modulated carrier frequency measurement [MANUAL mode] Measuring range : 100 MHz to 550 MHz [INPUT A] 500 MHz to 18 GHz [INPUT B] (R5372/P) 500 MHz to 27 GHz [INPUT B] (R5373/P) Pulse width : 0.5 µs (min.) (R5372/5373) 100 ns to 0.1 s (internally synchronized) (R5372P/5373P) 50 ns to 0.1 s (externally synchronized) (R5372P/5373P) #### SPECIFICATIONS Pulse repetition frequency (f $_{\mbox{\scriptsize R}}):$ 10 Hz to 5 MHz Resolution : 1/gate time (Hz) (R5372/5373) Note: Gate time is the decade step time of 0.1 µs to 10 s which is shorter than the pulse width minus 0.4 µs of pulse modulation wave. Maximum resolution: See Figure 9-2. Accuracy : ±1 count ±time base accuracy (R5372/5373) ± 1 count $\pm time$ base accuracy $\pm \frac{0.04}{GW}$ (Hz rms) ±5 kHz(R5372P/5373P) Calibration time : (50 μ s + $\frac{1}{f_R}$) x ($\frac{1}{\text{resolution}} \times \frac{1}{GW}$) x $(1 + \frac{1}{\text{resolution}} \times \frac{1}{\text{GW}}) + 20 \text{ ms } (R5372P/5373P)$ GW: Gate width (In case of internal synchronization, (Note) GW is the modulated pulse width minus approximately 50 ns.) : $(50 \mu s + \frac{1}{f_R}) \times (\frac{1}{resolution} \times \frac{1}{GW})^2$ Measuring time Unit of display : Hz, kHz, MHz and GHz (fixed display) Modulated pulse width measurement (R5372P/5373P only) Resolution : 10 ns Accuracy : 30 ns ± time base accuracy Unit of display : µs fixed Note: Pulse width at the input sensitivity level is displayed. Synchronized trigger mode INT : Gate is opened and closed in synchronism with internal detector output. #### 9. SPECIFICATIONS EXT START : Gate is opened by external signal, but triggering is possible only when internal detector output is produced. Input signal level (including sine-wave input) 2 Vp-p or more, 10 Vp-p or less with center voltage of +1.5 V; or 2 Vp-p or more, 10 Vp-p or less for sine-wave input signal with no DC component. Pulse width 1 μs or more for sine-wave input signal of 100 kHz or less EXT GATE : Gate is opened and closed by external signals. Input signal level TTL active low Pulse width 50 ns to 0.1 s Figure 9 - 2 Relationship Between Pulse Width and Maximum Resolution for the Carrier Frequency Measurement (R5372P/5373P) #### 9. SPECIFICATIONS LINE : Gate is opened in synchronism with line frequency, but triggering is possible only when internal detector output is produced. Sample rate : Continuously variable from 50 ms to 5 s and HOLD Delay time : Continuously variable from 26 μs to 30 ms and OFF (time from INT/EXT/LINE triggering to starting of counting) #### Time base Time base stability: See Table 9-2. Time base output : 10 MHz, 1 Vp-p or more Output impedance: Approx. 50 Ω External time-base frequency : 1, 2, 2.5, 5, or 10 MHz; 1 to 10 Vp-p Input impedance: Approx. 500 Ω Table 9 - 2 Time Base Stability | | Standard
specification | Option 21 | Option 22 | Option 23 | |--|--|---|---|--| | Aging rate
(long-term
stability) | 2x10-8/day
8x10-8/month
(1x10-7/year)
(After operating
24 hours) | 5x10 ⁻⁹ /day
5x10 ⁻⁸ /month
(8x10 ⁻⁸ /year)
(After operating
24 hours) | 2x10 ⁻⁹ /day
2x10 ⁻⁸ /month
(5x10 ⁻⁸ /year)
(After operating
48 hours) | 5x10 ⁻¹⁰ /day
1x10 ⁻⁸ /month
(2x10 ⁻⁸ /year)
(After operating
48 hours) | | Temperature
coefficient
(251C±251C) | 9 | ±5x10 ⁻⁸ | ±1x10 ⁻⁸ | ±5×10 ⁻⁹ | | Warmup *1 (Specified time) | ±5x10 ⁻⁸ (30 minutes) | ±2x10 ⁻⁸ (1 hour) | ±1x10 ⁻⁸ (1 hour) (±4x10 ⁻⁹)*3 | ±1x10 ⁻⁸ (1 hour) (±1x10 ⁻⁹)*3 | | Reproduc-
ibility *2
(Specified
time) | ±5x10 ⁻⁸ (30 minutes) | ±3x10 ⁻⁸ (1 hour) | ±2x10 ⁻⁸ (1 hour) (±1x10 ⁻⁸)*4 | ±1.5x10 ⁻⁸ (1 hour) (±5x10 ⁻⁹)*4 | ^{*1} Difference between the frequency measured when the specified time (30 minutes or one hour) has lapsed after powering on and that measured when 24 hours have lapsed after that specified time. #### 9. SPECIFICATIONS # Table 9 - 2 Time Base Stability (Cont'd) - *2 Difference between the frequency measured when the specified time has lapsed after powering on within 24 hours after last powering the instrument off and that measured immediately before last powering the instrument off. - *3 Difference between the frequency measured when 24 hours have lapsed after powering on within 24 hours after last powering off and that measured when 48 hours have lapsed. - *4 Difference between the frequency measured immediately before powering off and that measured when 24 hours have lapsed after subsequently powering the instrument on. STD IN/OUT connector: BNC type Backup power supply for memory: The memory is backed up as long as AC power is supplied. If the power supply cable is unplugged with the internal Ni-Cd battery charged, the memory is backed up for up to about 2 weeks. Charging the Ni-Cd battery takes 2 to 3 days. #### AUX INPUT/OUTPUT Input/output signals: Gate signal output, detector output, external reset signal input, measurement end signal output (TTL level) Computation capabilities: Maximum value holding, minimum value holding, deviation [(maximum deviation) (minimum deviation)], standard deviation, averaging, digital comparison GO/NO GO decision, display of marker frequency of TR4110 series Spectrum Analyzer, ppm, addition, subtraction, multiplication, division 9. SPECIFICATIONS ## (2) General specifications Display : Green 7-segment LEDs (approx. 11 mm high) storage display Operating temperature range: 0 to +40°C Operating humidity : 85% rh or less Storage temperature range: -20 to +70°C Power requirements: 100 VAC (120 V, 220 V) ±10% or 240 VAC +4 -10%, 50/60 Hz Power consumption : 90 VA or less (R5372/5373) 120 VA or less (R5372P/5373P) Dimensions : (W) $255 \times (H) 132 \times (D) 420 \text{ mm (approx.)}$ Weight : 10 kg or less ## (3) Options 1) GPIB interface (Option 01. This interface is equipped as standard feature) Complies with IEEE standard 488-1978. The output of display data and all key settings on the front panel can be externally controlled. 2 BCD parallel data output (Option 02 only. Note that either option 01 or 02 can be equipped.) TTL positive logic The nine low-order display digits are output in BCD parallel format for connection to the TR6198 Digital Recorder.